shithub: mc

ref: 1b52ea9d5660f5b21a465f59448941212b2f921e
dir: /lib/math/fpmath.myr/

View raw version
use std
use "impls"

pkg math =
	trait fpmath @f =

		/* atan-impl */
		atan : (x : @f -> @f)
		atan2 : (y : @f, x : @f -> @f)

		/* exp-impl */
		exp : (x : @f -> @f)
		expm1 : (x : @f -> @f)

		/* fma-impl */
		fma : (x : @f, y : @f, z : @f -> @f)

		/* log-impl */
		log : (x : @f -> @f)
		log1p : (x : @f -> @f)

		/* poly-impl */
		horner_poly : (x : @f, a : @f[:] -> @f)
		horner_polyu : (x : @f, a : @u[:] -> @f)

		/* pown-impl */
		pown : (x : @f, n : @i -> @f)
		rootn : (x : @f, n : @u -> @f)

		/* powr-impl */
		powr : (x : @f, y : @f -> @f)

		/* scale2-impl */
		scale2 : (x : @f, m : @i -> @f)

		/* sin-impl */
		sin : (x : @f -> @f)
		cos : (x : @f -> @f)
		sincos : (x : @f -> (@f, @f))

		/* sqrt-impl */
		sqrt : (x : @f -> @f)

		/* sum-impl */
		kahan_sum : (a : @f[:] -> @f)
		priest_sum : (a : @f[:] -> @f)

		/* tan-impl */
		tan : (x : @f -> @f)
		cot : (x : @f -> @f)

		/* trunc-impl */
		trunc : (x : @f -> @f)
		ceil  : (x : @f -> @f)
		floor : (x : @f -> @f)
	;;

	trait roundable @f -> @i =
		/* round-impl */
		rn : (x : @f -> @i)
	;;

	impl std.equatable flt32
	impl std.equatable flt64
	impl roundable flt64 -> int64
	impl roundable flt32 -> int32
	impl fpmath flt32
	impl fpmath flt64
;;

/*
   We consider two floating-point numbers equal if their bits are
   equal. This does not treat NaNs specially: two distinct NaNs may
   compare equal, or they may compare distinct (if they arise from
   different bit patterns).

   Additionally, +0.0 and -0.0 compare differently.
 */
impl std.equatable flt32 =
	eq = {a : flt32, b : flt32; -> std.flt32bits(a) == std.flt32bits(b)}
;;

impl std.equatable flt64 =
	eq = {a : flt64, b : flt64; -> std.flt64bits(a) == std.flt64bits(b)}
;;

impl roundable flt32 -> int32 =
	rn = {x : flt32; -> rn32(x) }
;;

impl roundable flt64 -> int64 =
	rn = {x : flt64; -> rn64(x) }
;;

impl fpmath flt32 =
	atan = {x; -> atan32(x)}
	atan2 = {y, x; -> atan232(y, x)}

	fma = {x, y, z; -> fma32(x, y, z)}

	exp = {x; -> exp32(x)}
	expm1 = {x; -> expm132(x)}

	log = {x; -> log32(x)}
	log1p = {x; -> log1p32(x)}

	horner_poly = {x, a; -> horner_poly32(x, a)}
	horner_polyu = {x, a; -> horner_polyu32(x, a)}

	pown = {x, n; -> pown32(x, n)}
	rootn = {x, q; -> rootn32(x, q)}

	powr = {x, y; -> powr32(x, y)}

	scale2 = {x, m; -> scale232(x, m)}

	sin = {x; -> sin32(x)}
	cos = {x; -> cos32(x)}
	sincos = {x; -> sincos32(x)}

	sqrt = {x; -> sqrt32(x)}

	kahan_sum = {l; -> kahan_sum32(l) }
	priest_sum = {l; -> priest_sum32(l) }

	tan = {x; -> tan32(x)}
	cot = {x; -> cot32(x)}

	trunc = {x; -> trunc32(x)}
	floor = {x; -> floor32(x)}
	ceil  = {x; -> ceil32(x)}

;;

impl fpmath flt64 =
	atan = {x; -> atan64(x)}
	atan2 = {y, x; -> atan264(y, x)}

	fma = {x, y, z; -> fma64(x, y, z)}

	exp = {x; -> exp64(x)}
	expm1 = {x; -> expm164(x)}

	log = {x; -> log64(x)}
	log1p = {x; -> log1p64(x)}

	horner_poly = {x, a; -> horner_poly64(x, a)}
	horner_polyu = {x, a; -> horner_polyu64(x, a)}

	pown = {x, n; -> pown64(x, n)}
	rootn = {x, q; -> rootn64(x, q)}

	powr = {x, y; -> powr64(x, y)}

	scale2 = {x, m; -> scale264(x, m)}

	sin = {x; -> sin64(x)}
	cos = {x; -> cos64(x)}
	sincos = {x; -> sincos64(x)}

	sqrt = {x; -> sqrt64(x)}

	kahan_sum = {l; -> kahan_sum64(l) }
	priest_sum = {l; -> priest_sum64(l) }

	tan = {x; -> tan64(x)}
	cot = {x; -> cot64(x)}

	trunc = {x; -> trunc64(x)}
	floor = {x; -> floor64(x)}
	ceil  = {x; -> ceil64(x)}
;;