ref: 578a06c798f9b0d52f74d8bfc9258ef74a9bb6c9
parent: 6ebf557c44b11a16ff15e5f560a81753be33bad3
author: Simon Howard <[email protected]>
date: Sun Aug 15 10:57:37 EDT 2010
Hook DBOPL into OPL library and remove FMOPL. Does not generate any sound yet. Subversion-branch: /trunk/chocolate-doom Subversion-revision: 1956
--- a/opl/Makefile.am
+++ b/opl/Makefile.am
@@ -15,5 +15,5 @@
opl_timer.c opl_timer.h \
opl_win32.c \
ioperm_sys.c ioperm_sys.h \
- fmopl.c fmopl.h
+ dbopl.c dbopl.h
--- a/opl/dbopl.c
+++ b/opl/dbopl.c
@@ -324,7 +324,7 @@
*/
//We zero out when rate == 0
-inline void Operator__UpdateAttack(Operator *self, const Chip* chip ) {
+static inline void Operator__UpdateAttack(Operator *self, const Chip* chip ) {
Bit8u rate = self->reg60 >> 4;
if ( rate ) {
Bit8u val = (rate << 2) + self->ksr;
@@ -335,7 +335,7 @@
self->rateZero |= (1 << ATTACK);
}
}
-inline void Operator__UpdateDecay(Operator *self, const Chip* chip ) {
+static inline void Operator__UpdateDecay(Operator *self, const Chip* chip ) {
Bit8u rate = self->reg60 & 0xf;
if ( rate ) {
Bit8u val = (rate << 2) + self->ksr;
@@ -346,7 +346,7 @@
self->rateZero |= (1 << DECAY);
}
}
-inline void Operator__UpdateRelease(Operator *self, const Chip* chip ) {
+static inline void Operator__UpdateRelease(Operator *self, const Chip* chip ) {
Bit8u rate = self->reg80 & 0xf;
if ( rate ) {
Bit8u val = (rate << 2) + self->ksr;
@@ -364,7 +364,7 @@
}
}
-inline void Operator__UpdateAttenuation(Operator *self) {
+static inline void Operator__UpdateAttenuation(Operator *self) {
Bit8u kslBase = (Bit8u)((self->chanData >> SHIFT_KSLBASE) & 0xff);
Bit32u tl = self->reg40 & 0x3f;
Bit8u kslShift = KslShiftTable[ self->reg40 >> 6 ];
@@ -373,7 +373,7 @@
self->totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
}
-void Operator__UpdateFrequency(Operator *self) {
+static void Operator__UpdateFrequency(Operator *self) {
Bit32u freq = self->chanData & (( 1 << 10 ) - 1);
Bit32u block = (self->chanData >> 10) & 0xff;
#ifdef WAVE_PRECISION
@@ -396,7 +396,7 @@
}
}
-void Operator__UpdateRates(Operator *self, const Chip* chip ) {
+static void Operator__UpdateRates(Operator *self, const Chip* chip ) {
//Mame seems to reverse this where enabling ksr actually lowers
//the rate, but pdf manuals says otherwise?
Bit8u newKsr = (Bit8u)((self->chanData >> SHIFT_KEYCODE) & 0xff);
@@ -489,7 +489,7 @@
};
static inline Bitu Operator__ForwardVolume(Operator *self) {
- return self->currentLevel + (self->volHandler)();
+ return self->currentLevel + (self->volHandler)(self);
}
@@ -498,7 +498,7 @@
return self->waveIndex >> WAVE_SH;
}
-void Operator__Write20(Operator *self, const Chip* chip, Bit8u val ) {
+static void Operator__Write20(Operator *self, const Chip* chip, Bit8u val ) {
Bit8u change = (self->reg20 ^ val );
if ( !change )
return;
@@ -523,7 +523,7 @@
}
}
-void Operator__Write40(Operator *self, const Chip *chip, Bit8u val ) {
+static void Operator__Write40(Operator *self, const Chip *chip, Bit8u val ) {
if (!(self->reg40 ^ val ))
return;
self->reg40 = val;
@@ -530,7 +530,7 @@
Operator__UpdateAttenuation( self );
}
-void Operator__Write60(Operator *self, const Chip* chip, Bit8u val ) {
+static void Operator__Write60(Operator *self, const Chip* chip, Bit8u val ) {
Bit8u change = self->reg60 ^ val;
self->reg60 = val;
if ( change & 0x0f ) {
@@ -541,7 +541,7 @@
}
}
-void Operator__Write80(Operator *self, const Chip* chip, Bit8u val ) {
+static void Operator__Write80(Operator *self, const Chip* chip, Bit8u val ) {
Bit8u change = (self->reg80 ^ val );
if ( !change )
return;
@@ -555,7 +555,7 @@
}
}
-void Operator__WriteE0(Operator *self, const Chip* chip, Bit8u val ) {
+static void Operator__WriteE0(Operator *self, const Chip* chip, Bit8u val ) {
if ( !(self->regE0 ^ val) )
return;
//in opl3 mode you can always selet 7 waveforms regardless of waveformselect
@@ -596,7 +596,7 @@
}
}
-void Operator__KeyOn(Operator *self, Bit8u mask ) {
+static void Operator__KeyOn(Operator *self, Bit8u mask ) {
if ( !self->keyOn ) {
//Restart the frequency generator
#if( DBOPL_WAVE > WAVE_HANDLER )
@@ -610,7 +610,7 @@
self->keyOn |= mask;
}
-void Operator__KeyOff(Operator *self, Bit8u mask ) {
+static void Operator__KeyOff(Operator *self, Bit8u mask ) {
self->keyOn &= ~mask;
if ( !self->keyOn ) {
if ( self->state != OFF ) {
@@ -649,7 +649,7 @@
}
}
-void Operator__Operator(Operator *self) {
+static void Operator__Operator(Operator *self) {
self->chanData = 0;
self->freqMul = 0;
self->waveIndex = 0;
@@ -675,7 +675,7 @@
Channel
*/
-void Channel__Channel(Channel *self) {
+static void Channel__Channel(Channel *self) {
Operator__Operator(&self->op[0]);
Operator__Operator(&self->op[1]);
self->old[0] = self->old[1] = 0;
@@ -693,7 +693,7 @@
return &( ( self + (index >> 1) )->op[ index & 1 ]);
}
-void Channel__SetChanData(Channel *self, const Chip* chip, Bit32u data ) {
+static void Channel__SetChanData(Channel *self, const Chip* chip, Bit32u data ) {
Bit32u change = self->chanData ^ data;
self->chanData = data;
Channel__Op( self, 0 )->chanData = data;
@@ -711,7 +711,7 @@
}
}
-void Channel__UpdateFrequency(Channel *self, const Chip* chip, Bit8u fourOp ) {
+static void Channel__UpdateFrequency(Channel *self, const Chip* chip, Bit8u fourOp ) {
//Extrace the frequency bits
Bit32u data = self->chanData & 0xffff;
Bit32u kslBase = KslTable[ data >> 6 ];
@@ -729,7 +729,7 @@
}
}
-void Channel__WriteA0(Channel *self, const Chip* chip, Bit8u val ) {
+static void Channel__WriteA0(Channel *self, const Chip* chip, Bit8u val ) {
Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
//Don't handle writes to silent fourop channels
if ( fourOp > 0x80 )
@@ -741,7 +741,7 @@
}
}
-void Channel__WriteB0(Channel *self, const Chip* chip, Bit8u val ) {
+static void Channel__WriteB0(Channel *self, const Chip* chip, Bit8u val ) {
Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
//Don't handle writes to silent fourop channels
if ( fourOp > 0x80 )
@@ -772,7 +772,7 @@
}
}
-void Channel__WriteC0(Channel *self, const Chip* chip, Bit8u val ) {
+static void Channel__WriteC0(Channel *self, const Chip* chip, Bit8u val ) {
Bit8u change = val ^ self->regC0;
if ( !change )
return;
@@ -838,7 +838,7 @@
}
}
-void Channel__ResetC0(Channel *self, const Chip* chip ) {
+static void Channel__ResetC0(Channel *self, const Chip* chip ) {
Bit8u val = self->regC0;
self->regC0 ^= 0xff;
Channel__WriteC0( self, chip, val );
@@ -975,7 +975,7 @@
Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
self->old[0] = self->old[1];
self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod );
- Bit32s sample;
+ Bit32s sample = 0;
Bit32s out0 = self->old[0];
if ( mode == sm2AM || mode == sm3AM ) {
sample = out0 + Operator__GetSample( Channel__Op(self, 1), 0 );
@@ -1095,7 +1095,7 @@
}
-void Chip__WriteBD(Chip *self, Bit8u val ) {
+static void Chip__WriteBD(Chip *self, Bit8u val ) {
Bit8u change = self->regBD ^ val;
if ( !change )
return;
@@ -1240,7 +1240,7 @@
}
-Bit32u Chip__WriteAddr(Chip *self, Bit32u port, Bit8u val ) {
+static Bit32u Chip__WriteAddr(Chip *self, Bit32u port, Bit8u val ) {
switch ( port & 3 ) {
case 0:
return val;
@@ -1415,7 +1415,7 @@
}
static int doneTables = FALSE;
-void InitTables( void ) {
+void DBOPL_InitTables( void ) {
int i, oct;
if ( doneTables )
--- a/opl/dbopl.h
+++ b/opl/dbopl.h
@@ -47,7 +47,7 @@
#define DB_FASTCALL
-typedef Bits (*VolumeHandler)();
+typedef Bits (*VolumeHandler)(Operator *self);
typedef Channel* (*SynthHandler)(Channel *self, Chip* chip, Bit32u samples, Bit32s* output );
//Different synth modes that can generate blocks of data
@@ -192,5 +192,12 @@
virtual void Init( Bitu rate );
};
*/
+
+
+void Chip__Setup(Chip *self, Bit32u rate );
+void DBOPL_InitTables( void );
+void Chip__Chip(Chip *self);
+void Chip__WriteReg(Chip *self, Bit32u reg, Bit8u val );
+void Chip__GenerateBlock2(Chip *self, Bitu total, Bit32s* output );
--- a/opl/fmopl.c
+++ /dev/null
@@ -1,1155 +1,0 @@
-/* This file is derived from fmopl.cpp from ScummVM.
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
- * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <stdarg.h>
-#include <math.h>
-
-#include "fmopl.h"
-
-#define PI 3.1415926539
-
-#define CLIP(value, min, max) \
- ( (value) < (min) ? (min) : \
- (value) > (max) ? (max) : (value) )
-
-/* -------------------- preliminary define section --------------------- */
-/* attack/decay rate time rate */
-#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
-#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
-
-#define FREQ_BITS 24 /* frequency turn */
-
-/* counter bits = 20 , octerve 7 */
-#define FREQ_RATE (1<<(FREQ_BITS-20))
-#define TL_BITS (FREQ_BITS+2)
-
-/* final output shift , limit minimum and maximum */
-#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
-#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
-#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
-
-/* -------------------- quality selection --------------------- */
-
-/* sinwave entries */
-/* used static memory = SIN_ENT * 4 (byte) */
-#define SIN_ENT_SHIFT 11
-#define SIN_ENT (1<<SIN_ENT_SHIFT)
-
-/* output level entries (envelope,sinwave) */
-/* envelope counter lower bits */
-static int ENV_BITS;
-/* envelope output entries */
-static int EG_ENT;
-
-/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
-/* used static memory = EG_ENT*4 (byte) */
-static int EG_OFF; /* OFF */
-static int EG_DED;
-static int EG_DST; /* DECAY START */
-static int EG_AED;
-#define EG_AST 0 /* ATTACK START */
-
-#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
-
-/* LFO table entries */
-#define VIB_ENT 512
-#define VIB_SHIFT (32-9)
-#define AMS_ENT 512
-#define AMS_SHIFT (32-9)
-
-#define VIB_RATE_SHIFT 8
-#define VIB_RATE (1<<VIB_RATE_SHIFT)
-
-/* -------------------- local defines , macros --------------------- */
-
-/* register number to channel number , slot offset */
-#define SLOT1 0
-#define SLOT2 1
-
-/* envelope phase */
-#define ENV_MOD_RR 0x00
-#define ENV_MOD_DR 0x01
-#define ENV_MOD_AR 0x02
-
-/* -------------------- tables --------------------- */
-static const int slot_array[32] = {
- 0, 2, 4, 1, 3, 5,-1,-1,
- 6, 8,10, 7, 9,11,-1,-1,
- 12,14,16,13,15,17,-1,-1,
- -1,-1,-1,-1,-1,-1,-1,-1
-};
-
-static uint32_t KSL_TABLE[8 * 16];
-
-static const double KSL_TABLE_SEED[8 * 16] = {
- /* OCT 0 */
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- /* OCT 1 */
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.750, 1.125, 1.500,
- 1.875, 2.250, 2.625, 3.000,
- /* OCT 2 */
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 1.125, 1.875, 2.625,
- 3.000, 3.750, 4.125, 4.500,
- 4.875, 5.250, 5.625, 6.000,
- /* OCT 3 */
- 0.000, 0.000, 0.000, 1.875,
- 3.000, 4.125, 4.875, 5.625,
- 6.000, 6.750, 7.125, 7.500,
- 7.875, 8.250, 8.625, 9.000,
- /* OCT 4 */
- 0.000, 0.000, 3.000, 4.875,
- 6.000, 7.125, 7.875, 8.625,
- 9.000, 9.750, 10.125, 10.500,
- 10.875, 11.250, 11.625, 12.000,
- /* OCT 5 */
- 0.000, 3.000, 6.000, 7.875,
- 9.000, 10.125, 10.875, 11.625,
- 12.000, 12.750, 13.125, 13.500,
- 13.875, 14.250, 14.625, 15.000,
- /* OCT 6 */
- 0.000, 6.000, 9.000, 10.875,
- 12.000, 13.125, 13.875, 14.625,
- 15.000, 15.750, 16.125, 16.500,
- 16.875, 17.250, 17.625, 18.000,
- /* OCT 7 */
- 0.000, 9.000, 12.000, 13.875,
- 15.000, 16.125, 16.875, 17.625,
- 18.000, 18.750, 19.125, 19.500,
- 19.875, 20.250, 20.625, 21.000
-};
-
-/* sustain level table (3db per step) */
-/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
-
-static int SL_TABLE[16];
-
-static const uint32_t SL_TABLE_SEED[16] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
-};
-
-#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
-/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
-/* TL_TABLE[ 0 to TL_MAX ] : plus section */
-/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
-static int *TL_TABLE;
-
-/* pointers to TL_TABLE with sinwave output offset */
-static int **SIN_TABLE;
-
-/* LFO table */
-static int *AMS_TABLE;
-static int *VIB_TABLE;
-
-/* envelope output curve table */
-/* attack + decay + OFF */
-//static int ENV_CURVE[2*EG_ENT+1];
-//static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ...
-static int *ENV_CURVE;
-
-
-/* multiple table */
-#define ML(a) (int)(a * 2)
-static const uint32_t MUL_TABLE[16]= {
-/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
- ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
- ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
-};
-#undef ML
-
-/* dummy attack / decay rate ( when rate == 0 ) */
-static int RATE_0[16]=
-{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-
-/* -------------------- static state --------------------- */
-
-/* lock level of common table */
-static int num_lock = 0;
-
-/* work table */
-static void *cur_chip = NULL; /* current chip point */
-/* currenct chip state */
-/* static OPLSAMPLE *bufL,*bufR; */
-static OPL_CH *S_CH;
-static OPL_CH *E_CH;
-static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
-
-static int outd[1];
-static int ams;
-static int vib;
-static int *ams_table;
-static int *vib_table;
-static int amsIncr;
-static int vibIncr;
-static int feedback2; /* connect for SLOT 2 */
-
-/* --------------------- rebuild tables ------------------- */
-
-#define ARRAYSIZE(x) (sizeof(x) / sizeof(*x))
-#define SC_KSL(mydb) ((uint32_t) (mydb / (EG_STEP / 2)))
-#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
-
-void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
- int i;
-
- ENV_BITS = ENV_BITS_PARAM;
- EG_ENT = EG_ENT_PARAM;
- EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */
- EG_DED = EG_OFF;
- EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */
- EG_AED = EG_DST;
- //EG_STEP = (96.0/EG_ENT);
-
- for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++)
- KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
-
- for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++)
- SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
-}
-
-#undef SC_KSL
-#undef SC_SL
-
-/* --------------------- subroutines --------------------- */
-
-/* status set and IRQ handling */
-static inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
- /* set status flag */
- OPL->status |= flag;
- if(!(OPL->status & 0x80)) {
- if(OPL->status & OPL->statusmask) { /* IRQ on */
- OPL->status |= 0x80;
- /* callback user interrupt handler (IRQ is OFF to ON) */
- if(OPL->IRQHandler)
- (OPL->IRQHandler)(OPL->IRQParam,1);
- }
- }
-}
-
-/* status reset and IRQ handling */
-static inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
- /* reset status flag */
- OPL->status &= ~flag;
- if((OPL->status & 0x80)) {
- if (!(OPL->status & OPL->statusmask)) {
- OPL->status &= 0x7f;
- /* callback user interrupt handler (IRQ is ON to OFF) */
- if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
- }
- }
-}
-
-/* IRQ mask set */
-static inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
- OPL->statusmask = flag;
- /* IRQ handling check */
- OPL_STATUS_SET(OPL,0);
- OPL_STATUS_RESET(OPL,0);
-}
-
-/* ----- key on ----- */
-static inline void OPL_KEYON(OPL_SLOT *SLOT) {
- /* sin wave restart */
- SLOT->Cnt = 0;
- /* set attack */
- SLOT->evm = ENV_MOD_AR;
- SLOT->evs = SLOT->evsa;
- SLOT->evc = EG_AST;
- SLOT->eve = EG_AED;
-}
-
-/* ----- key off ----- */
-static inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
- if( SLOT->evm > ENV_MOD_RR) {
- /* set envelope counter from envleope output */
-
- // WORKAROUND: The Kyra engine does something very strange when
- // starting a new song. For each channel:
- //
- // * The release rate is set to "fastest".
- // * Any note is keyed off.
- // * A very low-frequency note is keyed on.
- //
- // Usually, what happens next is that the real notes is keyed
- // on immediately, in which case there's no problem.
- //
- // However, if the note is again keyed off (because the channel
- // begins on a rest rather than a note), the envelope counter
- // was moved from the very lowest point on the attack curve to
- // the very highest point on the release curve.
- //
- // Again, this might not be a problem, if the release rate is
- // still set to "fastest". But in many cases, it had already
- // been increased. And, possibly because of inaccuracies in the
- // envelope generator, that would cause the note to "fade out"
- // for quite a long time.
- //
- // What we really need is a way to find the correct starting
- // point for the envelope counter, and that may be what the
- // commented-out line below is meant to do. For now, simply
- // handle the pathological case.
-
- if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST)
- SLOT->evc = EG_DED;
- else if( !(SLOT->evc & EG_DST) )
- //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
- SLOT->evc = EG_DST;
- SLOT->eve = EG_DED;
- SLOT->evs = SLOT->evsr;
- SLOT->evm = ENV_MOD_RR;
- }
-}
-
-/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
-
-/* return : envelope output */
-static inline uint32_t OPL_CALC_SLOT(OPL_SLOT *SLOT) {
- /* calcrate envelope generator */
- if((SLOT->evc += SLOT->evs) >= SLOT->eve) {
- switch( SLOT->evm ) {
- case ENV_MOD_AR: /* ATTACK -> DECAY1 */
- /* next DR */
- SLOT->evm = ENV_MOD_DR;
- SLOT->evc = EG_DST;
- SLOT->eve = SLOT->SL;
- SLOT->evs = SLOT->evsd;
- break;
- case ENV_MOD_DR: /* DECAY -> SL or RR */
- SLOT->evc = SLOT->SL;
- SLOT->eve = EG_DED;
- if(SLOT->eg_typ) {
- SLOT->evs = 0;
- } else {
- SLOT->evm = ENV_MOD_RR;
- SLOT->evs = SLOT->evsr;
- }
- break;
- case ENV_MOD_RR: /* RR -> OFF */
- SLOT->evc = EG_OFF;
- SLOT->eve = EG_OFF + 1;
- SLOT->evs = 0;
- break;
- }
- }
- /* calcrate envelope */
- return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
-}
-
-/* set algorythm connection */
-static void set_algorythm(OPL_CH *CH) {
- int *carrier = &outd[0];
- CH->connect1 = CH->CON ? carrier : &feedback2;
- CH->connect2 = carrier;
-}
-
-/* ---------- frequency counter for operater update ---------- */
-static inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
- int ksr;
-
- /* frequency step counter */
- SLOT->Incr = CH->fc * SLOT->mul;
- ksr = CH->kcode >> SLOT->KSR;
-
- if( SLOT->ksr != ksr ) {
- SLOT->ksr = ksr;
- /* attack , decay rate recalcration */
- SLOT->evsa = SLOT->AR[ksr];
- SLOT->evsd = SLOT->DR[ksr];
- SLOT->evsr = SLOT->RR[ksr];
- }
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
-}
-
-/* set multi,am,vib,EG-TYP,KSR,mul */
-static inline void set_mul(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
-
- SLOT->mul = MUL_TABLE[v & 0x0f];
- SLOT->KSR = (v & 0x10) ? 0 : 2;
- SLOT->eg_typ = (v & 0x20) >> 5;
- SLOT->vib = (v & 0x40);
- SLOT->ams = (v & 0x80);
- CALC_FCSLOT(CH, SLOT);
-}
-
-/* set ksl & tl */
-static inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
- int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
-
- SLOT->ksl = ksl ? 3-ksl : 31;
- SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
-
- if(!(OPL->mode & 0x80)) { /* not CSM latch total level */
- SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
- }
-}
-
-/* set attack rate & decay rate */
-static inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
- int ar = v >> 4;
- int dr = v & 0x0f;
-
- SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
- SLOT->evsa = SLOT->AR[SLOT->ksr];
- if(SLOT->evm == ENV_MOD_AR)
- SLOT->evs = SLOT->evsa;
-
- SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
- SLOT->evsd = SLOT->DR[SLOT->ksr];
- if(SLOT->evm == ENV_MOD_DR)
- SLOT->evs = SLOT->evsd;
-}
-
-/* set sustain level & release rate */
-static inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
- int sl = v >> 4;
- int rr = v & 0x0f;
-
- SLOT->SL = SL_TABLE[sl];
- if(SLOT->evm == ENV_MOD_DR)
- SLOT->eve = SLOT->SL;
- SLOT->RR = &OPL->DR_TABLE[rr<<2];
- SLOT->evsr = SLOT->RR[SLOT->ksr];
- if(SLOT->evm == ENV_MOD_RR)
- SLOT->evs = SLOT->evsr;
-}
-
-/* operator output calcrator */
-
-#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env]
-/* ---------- calcrate one of channel ---------- */
-static inline void OPL_CALC_CH(OPL_CH *CH) {
- uint32_t env_out;
- OPL_SLOT *SLOT;
-
- feedback2 = 0;
- /* SLOT 1 */
- SLOT = &CH->SLOT[SLOT1];
- env_out=OPL_CALC_SLOT(SLOT);
- if(env_out < (uint32_t)(EG_ENT - 1)) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- if(CH->FB) {
- int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
- CH->op1_out[1] = CH->op1_out[0];
- *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
- } else {
- *CH->connect1 += OP_OUT(SLOT, env_out, 0);
- }
- } else {
- CH->op1_out[1] = CH->op1_out[0];
- CH->op1_out[0] = 0;
- }
- /* SLOT 2 */
- SLOT = &CH->SLOT[SLOT2];
- env_out=OPL_CALC_SLOT(SLOT);
- if(env_out < (uint32_t)(EG_ENT - 1)) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- outd[0] += OP_OUT(SLOT, env_out, feedback2);
- }
-}
-
-/* ---------- calcrate rythm block ---------- */
-#define WHITE_NOISE_db 6.0
-static inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) {
- uint32_t env_tam, env_sd, env_top, env_hh;
- // This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)),
- // but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to
- // int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024,
- // or 128, so we can safely avoid any FP ops.
- int whitenoise = (rand() & 1) * (EG_ENT>>4);
-
- int tone8;
-
- OPL_SLOT *SLOT;
- int env_out;
-
- /* BD : same as FM serial mode and output level is large */
- feedback2 = 0;
- /* SLOT 1 */
- SLOT = &CH[6].SLOT[SLOT1];
- env_out = OPL_CALC_SLOT(SLOT);
- if(env_out < EG_ENT-1) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- if(CH[6].FB) {
- int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
- CH[6].op1_out[1] = CH[6].op1_out[0];
- feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
- }
- else {
- feedback2 = OP_OUT(SLOT, env_out, 0);
- }
- } else {
- feedback2 = 0;
- CH[6].op1_out[1] = CH[6].op1_out[0];
- CH[6].op1_out[0] = 0;
- }
- /* SLOT 2 */
- SLOT = &CH[6].SLOT[SLOT2];
- env_out = OPL_CALC_SLOT(SLOT);
- if(env_out < EG_ENT-1) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
- }
-
- // SD (17) = mul14[fnum7] + white noise
- // TAM (15) = mul15[fnum8]
- // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
- // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
- env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
- env_tam =OPL_CALC_SLOT(SLOT8_1);
- env_top = OPL_CALC_SLOT(SLOT8_2);
- env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
-
- /* PG */
- if(SLOT7_1->vib)
- SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1);
- else
- SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
- if(SLOT7_2->vib)
- SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3);
- else
- SLOT7_2->Cnt += (CH[7].fc * 8);
- if(SLOT8_1->vib)
- SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT8_1->Cnt += SLOT8_1->Incr;
- if(SLOT8_2->vib)
- SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4);
- else
- SLOT8_2->Cnt += (CH[8].fc * 48);
-
- tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
-
- /* SD */
- if(env_sd < (uint32_t)(EG_ENT - 1))
- outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
- /* TAM */
- if(env_tam < (uint32_t)(EG_ENT - 1))
- outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
- /* TOP-CY */
- if(env_top < (uint32_t)(EG_ENT - 1))
- outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
- /* HH */
- if(env_hh < (uint32_t)(EG_ENT-1))
- outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
-}
-
-/* ----------- initialize time tabls ----------- */
-static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
- int i;
- double rate;
-
- /* make attack rate & decay rate tables */
- for (i = 0; i < 4; i++)
- OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
- for (i = 4; i <= 60; i++) {
- rate = OPL->freqbase; /* frequency rate */
- if(i < 60)
- rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
- rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
- rate *= (double)(EG_ENT << ENV_BITS);
- OPL->AR_TABLE[i] = (int)(rate / ARRATE);
- OPL->DR_TABLE[i] = (int)(rate / DRRATE);
- }
- for (i = 60; i < 76; i++) {
- OPL->AR_TABLE[i] = EG_AED-1;
- OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
- }
-}
-
-/* ---------- generic table initialize ---------- */
-static int OPLOpenTable(void) {
- int s,t;
- double rate;
- int i,j;
- double pom;
-
- /* allocate dynamic tables */
- if((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
- return 0;
-
- if((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
- free(TL_TABLE);
- return 0;
- }
-
- if((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
- free(TL_TABLE);
- free(SIN_TABLE);
- return 0;
- }
-
- if((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
- free(TL_TABLE);
- free(SIN_TABLE);
- free(AMS_TABLE);
- return 0;
- }
- /* make total level table */
- for (t = 0; t < EG_ENT - 1 ; t++) {
- rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20); /* dB -> voltage */
- TL_TABLE[ t] = (int)rate;
- TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
- }
- /* fill volume off area */
- for (t = EG_ENT - 1; t < TL_MAX; t++) {
- TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
- }
-
- /* make sinwave table (total level offet) */
- /* degree 0 = degree 180 = off */
- SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
- for (s = 1;s <= SIN_ENT / 4; s++) {
- pom = sin(2 * PI * s / SIN_ENT); /* sin */
- pom = 20 * log10(1 / pom); /* decibel */
- j = (int) (pom / EG_STEP); /* TL_TABLE steps */
-
- /* degree 0 - 90 , degree 180 - 90 : plus section */
- SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
- /* degree 180 - 270 , degree 360 - 270 : minus section */
- SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
- }
- for (s = 0;s < SIN_ENT; s++) {
- SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
- SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
- SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
- }
-
-
- ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1));
-
- /* envelope counter -> envelope output table */
- for (i=0; i < EG_ENT; i++) {
- /* ATTACK curve */
- pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
- /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
- ENV_CURVE[i] = (int)pom;
- /* DECAY ,RELEASE curve */
- ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
- }
- /* off */
- ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
- /* make LFO ams table */
- for (i=0; i < AMS_ENT; i++) {
- pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */
- AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */
- AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
- }
- /* make LFO vibrate table */
- for (i=0; i < VIB_ENT; i++) {
- /* 100cent = 1seminote = 6% ?? */
- pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */
- VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
- VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
- }
- return 1;
-}
-
-static void OPLCloseTable(void) {
- free(TL_TABLE);
- free(SIN_TABLE);
- free(AMS_TABLE);
- free(VIB_TABLE);
- free(ENV_CURVE);
-}
-
-/* CSM Key Controll */
-static inline void CSMKeyControll(OPL_CH *CH) {
- OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
- OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
- /* all key off */
- OPL_KEYOFF(slot1);
- OPL_KEYOFF(slot2);
- /* total level latch */
- slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
- slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
- /* key on */
- CH->op1_out[0] = CH->op1_out[1] = 0;
- OPL_KEYON(slot1);
- OPL_KEYON(slot2);
-}
-
-/* ---------- opl initialize ---------- */
-static void OPL_initalize(FM_OPL *OPL) {
- int fn;
-
- /* frequency base */
- OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
- /* Timer base time */
- OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
- /* make time tables */
- init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
- /* make fnumber -> increment counter table */
- for( fn=0; fn < 1024; fn++) {
- OPL->FN_TABLE[fn] = (uint32_t)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
- }
- /* LFO freq.table */
- OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
- OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
-}
-
-/* ---------- write a OPL registers ---------- */
-void OPLWriteReg(FM_OPL *OPL, int r, int v) {
- OPL_CH *CH;
- int slot;
- uint32_t block_fnum;
-
- switch(r & 0xe0) {
- case 0x00: /* 00-1f:controll */
- switch(r & 0x1f) {
- case 0x01:
- /* wave selector enable */
- if(OPL->type&OPL_TYPE_WAVESEL) {
- OPL->wavesel = v & 0x20;
- if(!OPL->wavesel) {
- /* preset compatible mode */
- int c;
- for(c=0; c<OPL->max_ch; c++) {
- OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
- OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
- }
- }
- }
- return;
- case 0x02: /* Timer 1 */
- OPL->T[0] = (256-v) * 4;
- break;
- case 0x03: /* Timer 2 */
- OPL->T[1] = (256-v) * 16;
- return;
- case 0x04: /* IRQ clear / mask and Timer enable */
- if(v & 0x80) { /* IRQ flag clear */
- OPL_STATUS_RESET(OPL, 0x7f);
- } else { /* set IRQ mask ,timer enable*/
- uint8_t st1 = v & 1;
- uint8_t st2 = (v >> 1) & 1;
- /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
- OPL_STATUS_RESET(OPL, v & 0x78);
- OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
- /* timer 2 */
- if(OPL->st[1] != st2) {
- double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
- OPL->st[1] = st2;
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
- }
- /* timer 1 */
- if(OPL->st[0] != st1) {
- double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
- OPL->st[0] = st1;
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
- }
- }
- return;
- }
- break;
- case 0x20: /* am,vib,ksr,eg type,mul */
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_mul(OPL,slot,v);
- return;
- case 0x40:
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_ksl_tl(OPL,slot,v);
- return;
- case 0x60:
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_ar_dr(OPL,slot,v);
- return;
- case 0x80:
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_sl_rr(OPL,slot,v);
- return;
- case 0xa0:
- switch(r) {
- case 0xbd:
- /* amsep,vibdep,r,bd,sd,tom,tc,hh */
- {
- uint8_t rkey = OPL->rythm ^ v;
- OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
- OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
- OPL->rythm = v & 0x3f;
- if(OPL->rythm & 0x20) {
- /* BD key on/off */
- if(rkey & 0x10) {
- if(v & 0x10) {
- OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
- OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
- OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
- } else {
- OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
- OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
- }
- }
- /* SD key on/off */
- if(rkey & 0x08) {
- if(v & 0x08)
- OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
- else
- OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
- }/* TAM key on/off */
- if(rkey & 0x04) {
- if(v & 0x04)
- OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
- else
- OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
- }
- /* TOP-CY key on/off */
- if(rkey & 0x02) {
- if(v & 0x02)
- OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
- else
- OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
- }
- /* HH key on/off */
- if(rkey & 0x01) {
- if(v & 0x01)
- OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
- else
- OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
- }
- }
- }
- return;
-
- default:
- break;
- }
- /* keyon,block,fnum */
- if((r & 0x0f) > 8)
- return;
- CH = &OPL->P_CH[r & 0x0f];
- if(!(r&0x10)) { /* a0-a8 */
- block_fnum = (CH->block_fnum & 0x1f00) | v;
- } else { /* b0-b8 */
- int keyon = (v >> 5) & 1;
- block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
- if(CH->keyon != keyon) {
- if((CH->keyon=keyon)) {
- CH->op1_out[0] = CH->op1_out[1] = 0;
- OPL_KEYON(&CH->SLOT[SLOT1]);
- OPL_KEYON(&CH->SLOT[SLOT2]);
- } else {
- OPL_KEYOFF(&CH->SLOT[SLOT1]);
- OPL_KEYOFF(&CH->SLOT[SLOT2]);
- }
- }
- }
- /* update */
- if(CH->block_fnum != block_fnum) {
- int blockRv = 7 - (block_fnum >> 10);
- int fnum = block_fnum & 0x3ff;
- CH->block_fnum = block_fnum;
- CH->ksl_base = KSL_TABLE[block_fnum >> 6];
- CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
- CH->kcode = CH->block_fnum >> 9;
- if((OPL->mode & 0x40) && CH->block_fnum & 0x100)
- CH->kcode |=1;
- CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
- CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
- }
- return;
- case 0xc0:
- /* FB,C */
- if((r & 0x0f) > 8)
- return;
- CH = &OPL->P_CH[r&0x0f];
- {
- int feedback = (v >> 1) & 7;
- CH->FB = feedback ? (8 + 1) - feedback : 0;
- CH->CON = v & 1;
- set_algorythm(CH);
- }
- return;
- case 0xe0: /* wave type */
- slot = slot_array[r & 0x1f];
- if(slot == -1)
- return;
- CH = &OPL->P_CH[slot>>1];
- if(OPL->wavesel) {
- CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
- }
- return;
- }
-}
-
-/* lock/unlock for common table */
-static int OPL_LockTable(void) {
- num_lock++;
- if(num_lock>1)
- return 0;
- /* first time */
- cur_chip = NULL;
- /* allocate total level table (128kb space) */
- if(!OPLOpenTable()) {
- num_lock--;
- return -1;
- }
- return 0;
-}
-
-static void OPL_UnLockTable(void) {
- if(num_lock)
- num_lock--;
- if(num_lock)
- return;
- /* last time */
- cur_chip = NULL;
- OPLCloseTable();
-}
-
-/*******************************************************************************/
-/* YM3812 local section */
-/*******************************************************************************/
-
-/* ---------- update one of chip ----------- */
-void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length, int interleave) {
- int i;
- int data;
- int16_t *buf = buffer;
- uint32_t amsCnt = OPL->amsCnt;
- uint32_t vibCnt = OPL->vibCnt;
- uint8_t rythm = OPL->rythm & 0x20;
- OPL_CH *CH, *R_CH;
-
-
- if((void *)OPL != cur_chip) {
- cur_chip = (void *)OPL;
- /* channel pointers */
- S_CH = OPL->P_CH;
- E_CH = &S_CH[9];
- /* rythm slot */
- SLOT7_1 = &S_CH[7].SLOT[SLOT1];
- SLOT7_2 = &S_CH[7].SLOT[SLOT2];
- SLOT8_1 = &S_CH[8].SLOT[SLOT1];
- SLOT8_2 = &S_CH[8].SLOT[SLOT2];
- /* LFO state */
- amsIncr = OPL->amsIncr;
- vibIncr = OPL->vibIncr;
- ams_table = OPL->ams_table;
- vib_table = OPL->vib_table;
- }
- R_CH = rythm ? &S_CH[6] : E_CH;
- for(i = 0; i < length; i++) {
- /* channel A channel B channel C */
- /* LFO */
- ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
- vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
- outd[0] = 0;
- /* FM part */
- for(CH=S_CH; CH < R_CH; CH++)
- OPL_CALC_CH(CH);
- /* Rythn part */
- if(rythm)
- OPL_CALC_RH(OPL, S_CH);
- /* limit check */
- data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
- /* store to sound buffer */
- buf[i << interleave] = data >> OPL_OUTSB;
- }
-
- OPL->amsCnt = amsCnt;
- OPL->vibCnt = vibCnt;
-}
-
-/* ---------- reset a chip ---------- */
-void OPLResetChip(FM_OPL *OPL) {
- int c,s;
- int i;
-
- /* reset chip */
- OPL->mode = 0; /* normal mode */
- OPL_STATUS_RESET(OPL, 0x7f);
- /* reset with register write */
- OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
- OPLWriteReg(OPL, 0x02,0); /* Timer1 */
- OPLWriteReg(OPL, 0x03,0); /* Timer2 */
- OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
- for(i = 0xff; i >= 0x20; i--)
- OPLWriteReg(OPL,i,0);
- /* reset OPerator parameter */
- for(c = 0; c < OPL->max_ch ;c++ ) {
- OPL_CH *CH = &OPL->P_CH[c];
- /* OPL->P_CH[c].PAN = OPN_CENTER; */
- for(s = 0; s < 2; s++ ) {
- /* wave table */
- CH->SLOT[s].wavetable = &SIN_TABLE[0];
- /* CH->SLOT[s].evm = ENV_MOD_RR; */
- CH->SLOT[s].evc = EG_OFF;
- CH->SLOT[s].eve = EG_OFF + 1;
- CH->SLOT[s].evs = 0;
- }
- }
-}
-
-/* ---------- Create a virtual YM3812 ---------- */
-/* 'rate' is sampling rate and 'bufsiz' is the size of the */
-FM_OPL *OPLCreate(int type, int clock, int rate) {
- char *ptr;
- FM_OPL *OPL;
- int state_size;
- int max_ch = 9; /* normaly 9 channels */
-
- if( OPL_LockTable() == -1)
- return NULL;
- /* allocate OPL state space */
- state_size = sizeof(FM_OPL);
- state_size += sizeof(OPL_CH) * max_ch;
-
- /* allocate memory block */
- ptr = (char *)calloc(state_size, 1);
- if(ptr == NULL)
- return NULL;
-
- /* clear */
- memset(ptr, 0, state_size);
- OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
- OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
-
- /* set channel state pointer */
- OPL->type = type;
- OPL->clock = clock;
- OPL->rate = rate;
- OPL->max_ch = max_ch;
-
- /* init grobal tables */
- OPL_initalize(OPL);
-
- /* reset chip */
- OPLResetChip(OPL);
- return OPL;
-}
-
-/* ---------- Destroy one of vietual YM3812 ---------- */
-void OPLDestroy(FM_OPL *OPL) {
- OPL_UnLockTable();
- free(OPL);
-}
-
-/* ---------- Option handlers ---------- */
-void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
- OPL->TimerHandler = TimerHandler;
- OPL->TimerParam = channelOffset;
-}
-
-void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
- OPL->IRQHandler = IRQHandler;
- OPL->IRQParam = param;
-}
-
-void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
- OPL->UpdateHandler = UpdateHandler;
- OPL->UpdateParam = param;
-}
-
-/* ---------- YM3812 I/O interface ---------- */
-int OPLWrite(FM_OPL *OPL,int a,int v) {
- if(!(a & 1)) { /* address port */
- OPL->address = v & 0xff;
- } else { /* data port */
- if(OPL->UpdateHandler)
- OPL->UpdateHandler(OPL->UpdateParam,0);
- OPLWriteReg(OPL, OPL->address,v);
- }
- return OPL->status >> 7;
-}
-
-unsigned char OPLRead(FM_OPL *OPL,int a) {
- if(!(a & 1)) { /* status port */
- return OPL->status & (OPL->statusmask | 0x80);
- }
-
- return 0;
-}
-
-int OPLTimerOver(FM_OPL *OPL, int c) {
- if(c) { /* Timer B */
- OPL_STATUS_SET(OPL, 0x20);
- } else { /* Timer A */
- OPL_STATUS_SET(OPL, 0x40);
- /* CSM mode key,TL controll */
- if(OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
- int ch;
- if(OPL->UpdateHandler)
- OPL->UpdateHandler(OPL->UpdateParam,0);
- for(ch = 0; ch < 9; ch++)
- CSMKeyControll(&OPL->P_CH[ch]);
- }
- }
- /* reload timer */
- if (OPL->TimerHandler)
- (OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
- return OPL->status >> 7;
-}
-
-FM_OPL *makeAdlibOPL(int rate) {
- // We need to emulate one YM3812 chip
- int env_bits = FMOPL_ENV_BITS_HQ;
- int eg_ent = FMOPL_EG_ENT_HQ;
-
- OPLBuildTables(env_bits, eg_ent);
- return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
-}
-
--- a/opl/fmopl.h
+++ /dev/null
@@ -1,167 +1,0 @@
-/* This file is derived from fmopl.h from ScummVM.
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
- * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
- */
-
-
-#ifndef OPL_FMOPL_H
-#define OPL_FMOPL_H
-
-#include "inttypes.h"
-
-enum {
- FMOPL_ENV_BITS_HQ = 16,
- FMOPL_ENV_BITS_MQ = 8,
- FMOPL_ENV_BITS_LQ = 8,
- FMOPL_EG_ENT_HQ = 4096,
- FMOPL_EG_ENT_MQ = 1024,
- FMOPL_EG_ENT_LQ = 128
-};
-
-typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec);
-typedef void (*OPL_IRQHANDLER)(int param,int irq);
-typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us);
-
-#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
-
-/* Saving is necessary for member of the 'R' mark for suspend/resume */
-/* ---------- OPL one of slot ---------- */
-typedef struct fm_opl_slot {
- int TL; /* total level :TL << 8 */
- int TLL; /* adjusted now TL */
- uint8_t KSR; /* key scale rate :(shift down bit) */
- int *AR; /* attack rate :&AR_TABLE[AR<<2] */
- int *DR; /* decay rate :&DR_TABLE[DR<<2] */
- int SL; /* sustain level :SL_TABLE[SL] */
- int *RR; /* release rate :&DR_TABLE[RR<<2] */
- uint8_t ksl; /* keyscale level :(shift down bits) */
- uint8_t ksr; /* key scale rate :kcode>>KSR */
- unsigned int mul; /* multiple :ML_TABLE[ML] */
- unsigned int Cnt; /* frequency count */
- unsigned int Incr; /* frequency step */
-
- /* envelope generator state */
- uint8_t eg_typ;/* envelope type flag */
- uint8_t evm; /* envelope phase */
- int evc; /* envelope counter */
- int eve; /* envelope counter end point */
- int evs; /* envelope counter step */
- int evsa; /* envelope step for AR :AR[ksr] */
- int evsd; /* envelope step for DR :DR[ksr] */
- int evsr; /* envelope step for RR :RR[ksr] */
-
- /* LFO */
- uint8_t ams; /* ams flag */
- uint8_t vib; /* vibrate flag */
- /* wave selector */
- int **wavetable;
-} OPL_SLOT;
-
-/* ---------- OPL one of channel ---------- */
-typedef struct fm_opl_channel {
- OPL_SLOT SLOT[2];
- uint8_t CON; /* connection type */
- uint8_t FB; /* feed back :(shift down bit)*/
- int *connect1; /* slot1 output pointer */
- int *connect2; /* slot2 output pointer */
- int op1_out[2]; /* slot1 output for selfeedback */
-
- /* phase generator state */
- unsigned int block_fnum; /* block+fnum */
- uint8_t kcode; /* key code : KeyScaleCode */
- unsigned int fc; /* Freq. Increment base */
- unsigned int ksl_base; /* KeyScaleLevel Base step */
- uint8_t keyon; /* key on/off flag */
-} OPL_CH;
-
-/* OPL state */
-typedef struct fm_opl_f {
- uint8_t type; /* chip type */
- int clock; /* master clock (Hz) */
- int rate; /* sampling rate (Hz) */
- double freqbase; /* frequency base */
- double TimerBase; /* Timer base time (==sampling time) */
- uint8_t address; /* address register */
- uint8_t status; /* status flag */
- uint8_t statusmask; /* status mask */
- unsigned int mode; /* Reg.08 : CSM , notesel,etc. */
-
- /* Timer */
- int T[2]; /* timer counter */
- uint8_t st[2]; /* timer enable */
-
- /* FM channel slots */
- OPL_CH *P_CH; /* pointer of CH */
- int max_ch; /* maximum channel */
-
- /* Rythm sention */
- uint8_t rythm; /* Rythm mode , key flag */
-
- /* time tables */
- int AR_TABLE[76]; /* atttack rate tables */
- int DR_TABLE[76]; /* decay rate tables */
- unsigned int FN_TABLE[1024];/* fnumber -> increment counter */
-
- /* LFO */
- int *ams_table;
- int *vib_table;
- int amsCnt;
- int amsIncr;
- int vibCnt;
- int vibIncr;
-
- /* wave selector enable flag */
- uint8_t wavesel;
-
- /* external event callback handler */
- OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
- int TimerParam; /* TIMER parameter */
- OPL_IRQHANDLER IRQHandler; /* IRQ handler */
- int IRQParam; /* IRQ parameter */
- OPL_UPDATEHANDLER UpdateHandler; /* stream update handler */
- int UpdateParam; /* stream update parameter */
-} FM_OPL;
-
-/* ---------- Generic interface section ---------- */
-#define OPL_TYPE_YM3526 (0)
-#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
-
-void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM);
-
-FM_OPL *OPLCreate(int type, int clock, int rate);
-void OPLDestroy(FM_OPL *OPL);
-void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, int channelOffset);
-void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param);
-void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler, int param);
-
-void OPLResetChip(FM_OPL *OPL);
-int OPLWrite(FM_OPL *OPL, int a, int v);
-unsigned char OPLRead(FM_OPL *OPL, int a);
-int OPLTimerOver(FM_OPL *OPL, int c);
-void OPLWriteReg(FM_OPL *OPL, int r, int v);
-void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length, int interleave);
-
-// Factory method
-FM_OPL *makeAdlibOPL(int rate);
-
-#endif
-
--- a/opl/opl_sdl.c
+++ b/opl/opl_sdl.c
@@ -33,7 +33,7 @@
#include "SDL.h"
#include "SDL_mixer.h"
-#include "fmopl.h"
+#include "dbopl.h"
#include "opl.h"
#include "opl_internal.h"
@@ -42,6 +42,14 @@
#define MAX_SOUND_SLICE_TIME 100 /* ms */
+typedef struct
+{
+ unsigned int rate; // Number of times the timer is advanced per sec.
+ unsigned int enabled; // Non-zero if timer is enabled.
+ unsigned int value; // Last value that was set.
+ unsigned int expire_time; // Calculated time that timer will expire.
+} opl_timer_t;
+
// When the callback mutex is locked using OPL_Lock, callback functions
// are not invoked.
@@ -70,12 +78,21 @@
// OPL software emulator structure.
-static FM_OPL *opl_emulator = NULL;
+static Chip opl_chip;
// Temporary mixing buffer used by the mixing callback.
-static int16_t *mix_buffer = NULL;
+static int32_t *mix_buffer = NULL;
+// Register number that was written.
+
+static int register_num = 0;
+
+// Timers; DBOPL does not do timer stuff itself.
+
+static opl_timer_t timer1 = { 12500, 0, 0, 0 };
+static opl_timer_t timer2 = { 3125, 0, 0, 0 };
+
// SDL parameters.
static int sdl_was_initialized = 0;
@@ -153,14 +170,14 @@
assert(nsamples < mixing_freq);
- YM3812UpdateOne(opl_emulator, mix_buffer, nsamples, 0);
+ Chip__GenerateBlock2(&opl_chip, nsamples, mix_buffer);
// Mix into the destination buffer, doubling up into stereo.
for (i=0; i<nsamples; ++i)
{
- buffer[i * 2] = mix_buffer[i];
- buffer[i * 2 + 1] = mix_buffer[i];
+ buffer[i * 2] = (int16_t) (mix_buffer[i] / 65536);
+ buffer[i * 2 + 1] = (int16_t) (mix_buffer[i] / 65536);
}
}
@@ -179,7 +196,7 @@
buffer = (int16_t *) byte_buffer;
buffer_len = buffer_bytes / 4;
- // Repeatedly call the FMOPL update function until the buffer is
+ // Repeatedly call the OPL emulator update function until the buffer is
// full.
while (filled < buffer_len)
@@ -235,11 +252,13 @@
sdl_was_initialized = 0;
}
- if (opl_emulator != NULL)
+/*
+ if (opl_chip != NULL)
{
- OPLDestroy(opl_emulator);
- opl_emulator = NULL;
+ OPLDestroy(opl_chip);
+ opl_chip = NULL;
}
+ */
if (callback_mutex != NULL)
{
@@ -254,29 +273,6 @@
}
}
-// Callback when a timer expires.
-
-static void TimerOver(void *data)
-{
- int channel = (int) data;
-
- OPLTimerOver(opl_emulator, channel);
-}
-
-// Callback invoked when the emulator code wants to set a timer.
-
-static void TimerHandler(int channel, double interval_seconds)
-{
- unsigned int interval_samples;
-
- interval_samples = (int) (interval_seconds * mixing_freq);
-
- SDL_LockMutex(callback_queue_mutex);
- OPL_Queue_Push(callback_queue, TimerOver, (void *) channel,
- current_time - pause_offset + interval_samples);
- SDL_UnlockMutex(callback_queue_mutex);
-}
-
static unsigned int GetSliceSize(void)
{
int limit;
@@ -360,21 +356,14 @@
// Mix buffer:
- mix_buffer = malloc(mixing_freq * 2);
+ mix_buffer = malloc(mixing_freq * sizeof(uint32_t));
// Create the emulator structure:
- opl_emulator = makeAdlibOPL(mixing_freq);
+ DBOPL_InitTables();
+ Chip__Chip(&opl_chip);
+ Chip__Setup(&opl_chip, mixing_freq);
- if (opl_emulator == NULL)
- {
- fprintf(stderr, "Failed to initialize software OPL emulator!\n");
- OPL_SDL_Shutdown();
- return 0;
- }
-
- OPLSetTimerHandler(opl_emulator, TimerHandler, 0);
-
callback_mutex = SDL_CreateMutex();
callback_queue_mutex = SDL_CreateMutex();
@@ -386,21 +375,90 @@
static unsigned int OPL_SDL_PortRead(opl_port_t port)
{
- if (opl_emulator != NULL)
+ unsigned int result = 0;
+
+ if (timer1.enabled && current_time > timer1.expire_time)
{
- return OPLRead(opl_emulator, port);
+ result |= 0x80; // Either have expired
+ result |= 0x40; // Timer 1 has expired
}
- else
+
+ if (timer2.enabled && current_time > timer2.expire_time)
{
- return 0;
+ result |= 0x80; // Either have expired
+ result |= 0x20; // Timer 2 has expired
}
+
+ return result;
}
+static void OPLTimer_CalculateEndTime(opl_timer_t *timer)
+{
+ int tics;
+
+ // If the timer is enabled, calculate the time when the timer
+ // will expire.
+
+ if (timer->enabled)
+ {
+ tics = 0x100 - timer->value;
+ timer->expire_time = current_time
+ + (tics * opl_sample_rate) / timer->rate;
+ }
+}
+
+static void WriteRegister(unsigned int reg_num, unsigned int value)
+{
+ switch (reg_num)
+ {
+ case OPL_REG_TIMER1:
+ timer1.value = value;
+ OPLTimer_CalculateEndTime(&timer1);
+ break;
+
+ case OPL_REG_TIMER2:
+ timer2.value = value;
+ OPLTimer_CalculateEndTime(&timer2);
+ break;
+
+ case OPL_REG_TIMER_CTRL:
+ if (value & 0x80)
+ {
+ timer1.enabled = 0;
+ timer2.enabled = 0;
+ }
+ else
+ {
+ if ((value & 0x40) == 0)
+ {
+ timer1.enabled = (value & 0x01) != 0;
+ OPLTimer_CalculateEndTime(&timer1);
+ }
+
+ if ((value & 0x20) == 0)
+ {
+ timer1.enabled = (value & 0x02) != 0;
+ OPLTimer_CalculateEndTime(&timer2);
+ }
+ }
+
+ break;
+
+ default:
+ Chip__WriteReg(&opl_chip, reg_num, value);
+ break;
+ }
+}
+
static void OPL_SDL_PortWrite(opl_port_t port, unsigned int value)
{
- if (opl_emulator != NULL)
+ if (port == OPL_REGISTER_PORT)
{
- OPLWrite(opl_emulator, port, value);
+ register_num = value;
+ }
+ else if (port == OPL_DATA_PORT)
+ {
+ WriteRegister(register_num, value);
}
}