ref: 2a64882493c381b2ce9840ddd259aa5abb71a06a
parent: 65ace50d2e2a560a5bb08c1d24ffda6eb60f0e7b
author: Simon Howard <[email protected]>
date: Wed Mar 4 16:16:07 EST 2009
Add fmopl files from ScummVM. Subversion-branch: /branches/opl-branch Subversion-revision: 1445
--- /dev/null
+++ b/opl/fmopl.c
@@ -1,0 +1,1191 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL: http://scummvm.svn.sourceforge.net/svnroot/scummvm/scummvm/trunk/sound/fmopl.cpp $
+ * $Id: fmopl.cpp 38211 2009-02-15 10:07:50Z sev $
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdarg.h>
+#include <math.h>
+
+#include "sound/fmopl.h"
+
+#if defined (_WIN32_WCE) || defined (__SYMBIAN32__) || defined(PALMOS_MODE) || defined(__GP32__) || defined(GP2X) || defined (__MAEMO__) || defined(__DS__) || defined (__MINT__)
+#include "common/config-manager.h"
+#endif
+
+/* -------------------- preliminary define section --------------------- */
+/* attack/decay rate time rate */
+#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
+#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
+
+#define FREQ_BITS 24 /* frequency turn */
+
+/* counter bits = 20 , octerve 7 */
+#define FREQ_RATE (1<<(FREQ_BITS-20))
+#define TL_BITS (FREQ_BITS+2)
+
+/* final output shift , limit minimum and maximum */
+#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
+#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
+#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
+
+/* -------------------- quality selection --------------------- */
+
+/* sinwave entries */
+/* used static memory = SIN_ENT * 4 (byte) */
+#ifdef __DS__
+#include "dsmain.h"
+#define SIN_ENT_SHIFT 8
+#else
+#define SIN_ENT_SHIFT 11
+#endif
+#define SIN_ENT (1<<SIN_ENT_SHIFT)
+
+/* output level entries (envelope,sinwave) */
+/* envelope counter lower bits */
+int ENV_BITS;
+/* envelope output entries */
+int EG_ENT;
+
+/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
+/* used static memory = EG_ENT*4 (byte) */
+int EG_OFF; /* OFF */
+int EG_DED;
+int EG_DST; /* DECAY START */
+int EG_AED;
+#define EG_AST 0 /* ATTACK START */
+
+#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
+
+/* LFO table entries */
+#define VIB_ENT 512
+#define VIB_SHIFT (32-9)
+#define AMS_ENT 512
+#define AMS_SHIFT (32-9)
+
+#define VIB_RATE_SHIFT 8
+#define VIB_RATE (1<<VIB_RATE_SHIFT)
+
+/* -------------------- local defines , macros --------------------- */
+
+/* register number to channel number , slot offset */
+#define SLOT1 0
+#define SLOT2 1
+
+/* envelope phase */
+#define ENV_MOD_RR 0x00
+#define ENV_MOD_DR 0x01
+#define ENV_MOD_AR 0x02
+
+/* -------------------- tables --------------------- */
+static const int slot_array[32] = {
+ 0, 2, 4, 1, 3, 5,-1,-1,
+ 6, 8,10, 7, 9,11,-1,-1,
+ 12,14,16,13,15,17,-1,-1,
+ -1,-1,-1,-1,-1,-1,-1,-1
+};
+
+static uint KSL_TABLE[8 * 16];
+
+static const double KSL_TABLE_SEED[8 * 16] = {
+ /* OCT 0 */
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ /* OCT 1 */
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.750, 1.125, 1.500,
+ 1.875, 2.250, 2.625, 3.000,
+ /* OCT 2 */
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 1.125, 1.875, 2.625,
+ 3.000, 3.750, 4.125, 4.500,
+ 4.875, 5.250, 5.625, 6.000,
+ /* OCT 3 */
+ 0.000, 0.000, 0.000, 1.875,
+ 3.000, 4.125, 4.875, 5.625,
+ 6.000, 6.750, 7.125, 7.500,
+ 7.875, 8.250, 8.625, 9.000,
+ /* OCT 4 */
+ 0.000, 0.000, 3.000, 4.875,
+ 6.000, 7.125, 7.875, 8.625,
+ 9.000, 9.750, 10.125, 10.500,
+ 10.875, 11.250, 11.625, 12.000,
+ /* OCT 5 */
+ 0.000, 3.000, 6.000, 7.875,
+ 9.000, 10.125, 10.875, 11.625,
+ 12.000, 12.750, 13.125, 13.500,
+ 13.875, 14.250, 14.625, 15.000,
+ /* OCT 6 */
+ 0.000, 6.000, 9.000, 10.875,
+ 12.000, 13.125, 13.875, 14.625,
+ 15.000, 15.750, 16.125, 16.500,
+ 16.875, 17.250, 17.625, 18.000,
+ /* OCT 7 */
+ 0.000, 9.000, 12.000, 13.875,
+ 15.000, 16.125, 16.875, 17.625,
+ 18.000, 18.750, 19.125, 19.500,
+ 19.875, 20.250, 20.625, 21.000
+};
+
+/* sustain level table (3db per step) */
+/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
+
+static int SL_TABLE[16];
+
+static const uint SL_TABLE_SEED[16] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
+};
+
+#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
+/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
+/* TL_TABLE[ 0 to TL_MAX ] : plus section */
+/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
+static int *TL_TABLE;
+
+/* pointers to TL_TABLE with sinwave output offset */
+static int **SIN_TABLE;
+
+/* LFO table */
+static int *AMS_TABLE;
+static int *VIB_TABLE;
+
+/* envelope output curve table */
+/* attack + decay + OFF */
+//static int ENV_CURVE[2*EG_ENT+1];
+//static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ...
+static int *ENV_CURVE;
+
+
+/* multiple table */
+#define ML(a) (int)(a * 2)
+static const uint MUL_TABLE[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
+ ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
+ ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
+};
+#undef ML
+
+/* dummy attack / decay rate ( when rate == 0 ) */
+static int RATE_0[16]=
+{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+/* -------------------- static state --------------------- */
+
+/* lock level of common table */
+static int num_lock = 0;
+
+/* work table */
+static void *cur_chip = NULL; /* current chip point */
+/* currenct chip state */
+/* static OPLSAMPLE *bufL,*bufR; */
+static OPL_CH *S_CH;
+static OPL_CH *E_CH;
+OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
+
+static int outd[1];
+static int ams;
+static int vib;
+int *ams_table;
+int *vib_table;
+static int amsIncr;
+static int vibIncr;
+static int feedback2; /* connect for SLOT 2 */
+
+/* --------------------- rebuild tables ------------------- */
+
+#define SC_KSL(mydb) ((uint) (mydb / (EG_STEP / 2)))
+#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
+ int i;
+
+ ENV_BITS = ENV_BITS_PARAM;
+ EG_ENT = EG_ENT_PARAM;
+ EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */
+ EG_DED = EG_OFF;
+ EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */
+ EG_AED = EG_DST;
+ //EG_STEP = (96.0/EG_ENT);
+
+ for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++)
+ KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
+
+ for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++)
+ SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
+}
+
+#undef SC_KSL
+#undef SC_SL
+
+/* --------------------- subroutines --------------------- */
+
+/* status set and IRQ handling */
+inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
+ /* set status flag */
+ OPL->status |= flag;
+ if(!(OPL->status & 0x80)) {
+ if(OPL->status & OPL->statusmask) { /* IRQ on */
+ OPL->status |= 0x80;
+ /* callback user interrupt handler (IRQ is OFF to ON) */
+ if(OPL->IRQHandler)
+ (OPL->IRQHandler)(OPL->IRQParam,1);
+ }
+ }
+}
+
+/* status reset and IRQ handling */
+inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
+ /* reset status flag */
+ OPL->status &= ~flag;
+ if((OPL->status & 0x80)) {
+ if (!(OPL->status & OPL->statusmask)) {
+ OPL->status &= 0x7f;
+ /* callback user interrupt handler (IRQ is ON to OFF) */
+ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
+ }
+ }
+}
+
+/* IRQ mask set */
+inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
+ OPL->statusmask = flag;
+ /* IRQ handling check */
+ OPL_STATUS_SET(OPL,0);
+ OPL_STATUS_RESET(OPL,0);
+}
+
+/* ----- key on ----- */
+inline void OPL_KEYON(OPL_SLOT *SLOT) {
+ /* sin wave restart */
+ SLOT->Cnt = 0;
+ /* set attack */
+ SLOT->evm = ENV_MOD_AR;
+ SLOT->evs = SLOT->evsa;
+ SLOT->evc = EG_AST;
+ SLOT->eve = EG_AED;
+}
+
+/* ----- key off ----- */
+inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
+ if( SLOT->evm > ENV_MOD_RR) {
+ /* set envelope counter from envleope output */
+
+ // WORKAROUND: The Kyra engine does something very strange when
+ // starting a new song. For each channel:
+ //
+ // * The release rate is set to "fastest".
+ // * Any note is keyed off.
+ // * A very low-frequency note is keyed on.
+ //
+ // Usually, what happens next is that the real notes is keyed
+ // on immediately, in which case there's no problem.
+ //
+ // However, if the note is again keyed off (because the channel
+ // begins on a rest rather than a note), the envelope counter
+ // was moved from the very lowest point on the attack curve to
+ // the very highest point on the release curve.
+ //
+ // Again, this might not be a problem, if the release rate is
+ // still set to "fastest". But in many cases, it had already
+ // been increased. And, possibly because of inaccuracies in the
+ // envelope generator, that would cause the note to "fade out"
+ // for quite a long time.
+ //
+ // What we really need is a way to find the correct starting
+ // point for the envelope counter, and that may be what the
+ // commented-out line below is meant to do. For now, simply
+ // handle the pathological case.
+
+ if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST)
+ SLOT->evc = EG_DED;
+ else if( !(SLOT->evc & EG_DST) )
+ //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
+ SLOT->evc = EG_DST;
+ SLOT->eve = EG_DED;
+ SLOT->evs = SLOT->evsr;
+ SLOT->evm = ENV_MOD_RR;
+ }
+}
+
+/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
+
+/* return : envelope output */
+inline uint OPL_CALC_SLOT(OPL_SLOT *SLOT) {
+ /* calcrate envelope generator */
+ if((SLOT->evc += SLOT->evs) >= SLOT->eve) {
+ switch( SLOT->evm ) {
+ case ENV_MOD_AR: /* ATTACK -> DECAY1 */
+ /* next DR */
+ SLOT->evm = ENV_MOD_DR;
+ SLOT->evc = EG_DST;
+ SLOT->eve = SLOT->SL;
+ SLOT->evs = SLOT->evsd;
+ break;
+ case ENV_MOD_DR: /* DECAY -> SL or RR */
+ SLOT->evc = SLOT->SL;
+ SLOT->eve = EG_DED;
+ if(SLOT->eg_typ) {
+ SLOT->evs = 0;
+ } else {
+ SLOT->evm = ENV_MOD_RR;
+ SLOT->evs = SLOT->evsr;
+ }
+ break;
+ case ENV_MOD_RR: /* RR -> OFF */
+ SLOT->evc = EG_OFF;
+ SLOT->eve = EG_OFF + 1;
+ SLOT->evs = 0;
+ break;
+ }
+ }
+ /* calcrate envelope */
+ return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
+}
+
+/* set algorythm connection */
+static void set_algorythm(OPL_CH *CH) {
+ int *carrier = &outd[0];
+ CH->connect1 = CH->CON ? carrier : &feedback2;
+ CH->connect2 = carrier;
+}
+
+/* ---------- frequency counter for operater update ---------- */
+inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
+ int ksr;
+
+ /* frequency step counter */
+ SLOT->Incr = CH->fc * SLOT->mul;
+ ksr = CH->kcode >> SLOT->KSR;
+
+ if( SLOT->ksr != ksr ) {
+ SLOT->ksr = ksr;
+ /* attack , decay rate recalcration */
+ SLOT->evsa = SLOT->AR[ksr];
+ SLOT->evsd = SLOT->DR[ksr];
+ SLOT->evsr = SLOT->RR[ksr];
+ }
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+}
+
+/* set multi,am,vib,EG-TYP,KSR,mul */
+inline void set_mul(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+
+ SLOT->mul = MUL_TABLE[v & 0x0f];
+ SLOT->KSR = (v & 0x10) ? 0 : 2;
+ SLOT->eg_typ = (v & 0x20) >> 5;
+ SLOT->vib = (v & 0x40);
+ SLOT->ams = (v & 0x80);
+ CALC_FCSLOT(CH, SLOT);
+}
+
+/* set ksl & tl */
+inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
+
+ SLOT->ksl = ksl ? 3-ksl : 31;
+ SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
+
+ if(!(OPL->mode & 0x80)) { /* not CSM latch total level */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
+ }
+}
+
+/* set attack rate & decay rate */
+inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int ar = v >> 4;
+ int dr = v & 0x0f;
+
+ SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
+ SLOT->evsa = SLOT->AR[SLOT->ksr];
+ if(SLOT->evm == ENV_MOD_AR)
+ SLOT->evs = SLOT->evsa;
+
+ SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
+ SLOT->evsd = SLOT->DR[SLOT->ksr];
+ if(SLOT->evm == ENV_MOD_DR)
+ SLOT->evs = SLOT->evsd;
+}
+
+/* set sustain level & release rate */
+inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int sl = v >> 4;
+ int rr = v & 0x0f;
+
+ SLOT->SL = SL_TABLE[sl];
+ if(SLOT->evm == ENV_MOD_DR)
+ SLOT->eve = SLOT->SL;
+ SLOT->RR = &OPL->DR_TABLE[rr<<2];
+ SLOT->evsr = SLOT->RR[SLOT->ksr];
+ if(SLOT->evm == ENV_MOD_RR)
+ SLOT->evs = SLOT->evsr;
+}
+
+/* operator output calcrator */
+
+#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env]
+/* ---------- calcrate one of channel ---------- */
+inline void OPL_CALC_CH(OPL_CH *CH) {
+ uint env_out;
+ OPL_SLOT *SLOT;
+
+ feedback2 = 0;
+ /* SLOT 1 */
+ SLOT = &CH->SLOT[SLOT1];
+ env_out=OPL_CALC_SLOT(SLOT);
+ if(env_out < (uint)(EG_ENT - 1)) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ if(CH->FB) {
+ int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
+ CH->op1_out[1] = CH->op1_out[0];
+ *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+ } else {
+ *CH->connect1 += OP_OUT(SLOT, env_out, 0);
+ }
+ } else {
+ CH->op1_out[1] = CH->op1_out[0];
+ CH->op1_out[0] = 0;
+ }
+ /* SLOT 2 */
+ SLOT = &CH->SLOT[SLOT2];
+ env_out=OPL_CALC_SLOT(SLOT);
+ if(env_out < (uint)(EG_ENT - 1)) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ outd[0] += OP_OUT(SLOT, env_out, feedback2);
+ }
+}
+
+/* ---------- calcrate rythm block ---------- */
+#define WHITE_NOISE_db 6.0
+inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) {
+ uint env_tam, env_sd, env_top, env_hh;
+ // This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)),
+ // but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to
+ // int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024,
+ // or 128, so we can safely avoid any FP ops.
+ int whitenoise = OPL->rnd.getRandomBit() * (EG_ENT>>4);
+
+ int tone8;
+
+ OPL_SLOT *SLOT;
+ int env_out;
+
+ /* BD : same as FM serial mode and output level is large */
+ feedback2 = 0;
+ /* SLOT 1 */
+ SLOT = &CH[6].SLOT[SLOT1];
+ env_out = OPL_CALC_SLOT(SLOT);
+ if(env_out < EG_ENT-1) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ if(CH[6].FB) {
+ int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
+ CH[6].op1_out[1] = CH[6].op1_out[0];
+ feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+ }
+ else {
+ feedback2 = OP_OUT(SLOT, env_out, 0);
+ }
+ } else {
+ feedback2 = 0;
+ CH[6].op1_out[1] = CH[6].op1_out[0];
+ CH[6].op1_out[0] = 0;
+ }
+ /* SLOT 2 */
+ SLOT = &CH[6].SLOT[SLOT2];
+ env_out = OPL_CALC_SLOT(SLOT);
+ if(env_out < EG_ENT-1) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
+ }
+
+ // SD (17) = mul14[fnum7] + white noise
+ // TAM (15) = mul15[fnum8]
+ // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
+ // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
+ env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
+ env_tam =OPL_CALC_SLOT(SLOT8_1);
+ env_top = OPL_CALC_SLOT(SLOT8_2);
+ env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
+
+ /* PG */
+ if(SLOT7_1->vib)
+ SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1);
+ else
+ SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
+ if(SLOT7_2->vib)
+ SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3);
+ else
+ SLOT7_2->Cnt += (CH[7].fc * 8);
+ if(SLOT8_1->vib)
+ SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT8_1->Cnt += SLOT8_1->Incr;
+ if(SLOT8_2->vib)
+ SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4);
+ else
+ SLOT8_2->Cnt += (CH[8].fc * 48);
+
+ tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
+
+ /* SD */
+ if(env_sd < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
+ /* TAM */
+ if(env_tam < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
+ /* TOP-CY */
+ if(env_top < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
+ /* HH */
+ if(env_hh < (uint)(EG_ENT-1))
+ outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
+}
+
+/* ----------- initialize time tabls ----------- */
+static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
+ int i;
+ double rate;
+
+ /* make attack rate & decay rate tables */
+ for (i = 0; i < 4; i++)
+ OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
+ for (i = 4; i <= 60; i++) {
+ rate = OPL->freqbase; /* frequency rate */
+ if(i < 60)
+ rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
+ rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
+ rate *= (double)(EG_ENT << ENV_BITS);
+ OPL->AR_TABLE[i] = (int)(rate / ARRATE);
+ OPL->DR_TABLE[i] = (int)(rate / DRRATE);
+ }
+ for (i = 60; i < 76; i++) {
+ OPL->AR_TABLE[i] = EG_AED-1;
+ OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
+ }
+}
+
+/* ---------- generic table initialize ---------- */
+static int OPLOpenTable(void) {
+ int s,t;
+ double rate;
+ int i,j;
+ double pom;
+
+#ifdef __DS__
+ DS::fastRamReset();
+
+ TL_TABLE = (int *) DS::fastRamAlloc(TL_MAX * 2 * sizeof(int *));
+ SIN_TABLE = (int **) DS::fastRamAlloc(SIN_ENT * 4 * sizeof(int *));
+#else
+
+ /* allocate dynamic tables */
+ if((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
+ return 0;
+
+ if((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
+ free(TL_TABLE);
+ return 0;
+ }
+#endif
+
+ if((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ return 0;
+ }
+
+ if((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ free(AMS_TABLE);
+ return 0;
+ }
+ /* make total level table */
+ for (t = 0; t < EG_ENT - 1 ; t++) {
+ rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20); /* dB -> voltage */
+ TL_TABLE[ t] = (int)rate;
+ TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
+ }
+ /* fill volume off area */
+ for (t = EG_ENT - 1; t < TL_MAX; t++) {
+ TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
+ }
+
+ /* make sinwave table (total level offet) */
+ /* degree 0 = degree 180 = off */
+ SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
+ for (s = 1;s <= SIN_ENT / 4; s++) {
+ pom = sin(2 * PI * s / SIN_ENT); /* sin */
+ pom = 20 * log10(1 / pom); /* decibel */
+ j = int(pom / EG_STEP); /* TL_TABLE steps */
+
+ /* degree 0 - 90 , degree 180 - 90 : plus section */
+ SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
+ /* degree 180 - 270 , degree 360 - 270 : minus section */
+ SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
+ }
+ for (s = 0;s < SIN_ENT; s++) {
+ SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
+ SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
+ SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
+ }
+
+
+ ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1));
+
+ /* envelope counter -> envelope output table */
+ for (i=0; i < EG_ENT; i++) {
+ /* ATTACK curve */
+ pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
+ /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
+ ENV_CURVE[i] = (int)pom;
+ /* DECAY ,RELEASE curve */
+ ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
+ }
+ /* off */
+ ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
+ /* make LFO ams table */
+ for (i=0; i < AMS_ENT; i++) {
+ pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */
+ AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */
+ AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
+ }
+ /* make LFO vibrate table */
+ for (i=0; i < VIB_ENT; i++) {
+ /* 100cent = 1seminote = 6% ?? */
+ pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */
+ VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
+ VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
+ }
+ return 1;
+}
+
+static void OPLCloseTable(void) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ free(AMS_TABLE);
+ free(VIB_TABLE);
+ free(ENV_CURVE);
+}
+
+/* CSM Key Controll */
+inline void CSMKeyControll(OPL_CH *CH) {
+ OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
+ OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
+ /* all key off */
+ OPL_KEYOFF(slot1);
+ OPL_KEYOFF(slot2);
+ /* total level latch */
+ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+ /* key on */
+ CH->op1_out[0] = CH->op1_out[1] = 0;
+ OPL_KEYON(slot1);
+ OPL_KEYON(slot2);
+}
+
+/* ---------- opl initialize ---------- */
+static void OPL_initalize(FM_OPL *OPL) {
+ int fn;
+
+ /* frequency base */
+ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
+ /* Timer base time */
+ OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
+ /* make time tables */
+ init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
+ /* make fnumber -> increment counter table */
+ for( fn=0; fn < 1024; fn++) {
+ OPL->FN_TABLE[fn] = (uint)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
+ }
+ /* LFO freq.table */
+ OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
+ OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
+}
+
+/* ---------- write a OPL registers ---------- */
+void OPLWriteReg(FM_OPL *OPL, int r, int v) {
+ OPL_CH *CH;
+ int slot;
+ uint block_fnum;
+
+ switch(r & 0xe0) {
+ case 0x00: /* 00-1f:controll */
+ switch(r & 0x1f) {
+ case 0x01:
+ /* wave selector enable */
+ if(OPL->type&OPL_TYPE_WAVESEL) {
+ OPL->wavesel = v & 0x20;
+ if(!OPL->wavesel) {
+ /* preset compatible mode */
+ int c;
+ for(c=0; c<OPL->max_ch; c++) {
+ OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
+ OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
+ }
+ }
+ }
+ return;
+ case 0x02: /* Timer 1 */
+ OPL->T[0] = (256-v) * 4;
+ break;
+ case 0x03: /* Timer 2 */
+ OPL->T[1] = (256-v) * 16;
+ return;
+ case 0x04: /* IRQ clear / mask and Timer enable */
+ if(v & 0x80) { /* IRQ flag clear */
+ OPL_STATUS_RESET(OPL, 0x7f);
+ } else { /* set IRQ mask ,timer enable*/
+ uint8 st1 = v & 1;
+ uint8 st2 = (v >> 1) & 1;
+ /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
+ OPL_STATUS_RESET(OPL, v & 0x78);
+ OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
+ /* timer 2 */
+ if(OPL->st[1] != st2) {
+ double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
+ OPL->st[1] = st2;
+ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
+ }
+ /* timer 1 */
+ if(OPL->st[0] != st1) {
+ double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
+ OPL->st[0] = st1;
+ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
+ }
+ }
+ return;
+ }
+ break;
+ case 0x20: /* am,vib,ksr,eg type,mul */
+ slot = slot_array[r&0x1f];
+ if(slot == -1)
+ return;
+ set_mul(OPL,slot,v);
+ return;
+ case 0x40:
+ slot = slot_array[r&0x1f];
+ if(slot == -1)
+ return;
+ set_ksl_tl(OPL,slot,v);
+ return;
+ case 0x60:
+ slot = slot_array[r&0x1f];
+ if(slot == -1)
+ return;
+ set_ar_dr(OPL,slot,v);
+ return;
+ case 0x80:
+ slot = slot_array[r&0x1f];
+ if(slot == -1)
+ return;
+ set_sl_rr(OPL,slot,v);
+ return;
+ case 0xa0:
+ switch(r) {
+ case 0xbd:
+ /* amsep,vibdep,r,bd,sd,tom,tc,hh */
+ {
+ uint8 rkey = OPL->rythm ^ v;
+ OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
+ OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
+ OPL->rythm = v & 0x3f;
+ if(OPL->rythm & 0x20) {
+ /* BD key on/off */
+ if(rkey & 0x10) {
+ if(v & 0x10) {
+ OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
+ OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
+ OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
+ } else {
+ OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
+ OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
+ }
+ }
+ /* SD key on/off */
+ if(rkey & 0x08) {
+ if(v & 0x08)
+ OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
+ }/* TAM key on/off */
+ if(rkey & 0x04) {
+ if(v & 0x04)
+ OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
+ }
+ /* TOP-CY key on/off */
+ if(rkey & 0x02) {
+ if(v & 0x02)
+ OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
+ }
+ /* HH key on/off */
+ if(rkey & 0x01) {
+ if(v & 0x01)
+ OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
+ }
+ }
+ }
+ return;
+
+ default:
+ break;
+ }
+ /* keyon,block,fnum */
+ if((r & 0x0f) > 8)
+ return;
+ CH = &OPL->P_CH[r & 0x0f];
+ if(!(r&0x10)) { /* a0-a8 */
+ block_fnum = (CH->block_fnum & 0x1f00) | v;
+ } else { /* b0-b8 */
+ int keyon = (v >> 5) & 1;
+ block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
+ if(CH->keyon != keyon) {
+ if((CH->keyon=keyon)) {
+ CH->op1_out[0] = CH->op1_out[1] = 0;
+ OPL_KEYON(&CH->SLOT[SLOT1]);
+ OPL_KEYON(&CH->SLOT[SLOT2]);
+ } else {
+ OPL_KEYOFF(&CH->SLOT[SLOT1]);
+ OPL_KEYOFF(&CH->SLOT[SLOT2]);
+ }
+ }
+ }
+ /* update */
+ if(CH->block_fnum != block_fnum) {
+ int blockRv = 7 - (block_fnum >> 10);
+ int fnum = block_fnum & 0x3ff;
+ CH->block_fnum = block_fnum;
+ CH->ksl_base = KSL_TABLE[block_fnum >> 6];
+ CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
+ CH->kcode = CH->block_fnum >> 9;
+ if((OPL->mode & 0x40) && CH->block_fnum & 0x100)
+ CH->kcode |=1;
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
+ }
+ return;
+ case 0xc0:
+ /* FB,C */
+ if((r & 0x0f) > 8)
+ return;
+ CH = &OPL->P_CH[r&0x0f];
+ {
+ int feedback = (v >> 1) & 7;
+ CH->FB = feedback ? (8 + 1) - feedback : 0;
+ CH->CON = v & 1;
+ set_algorythm(CH);
+ }
+ return;
+ case 0xe0: /* wave type */
+ slot = slot_array[r & 0x1f];
+ if(slot == -1)
+ return;
+ CH = &OPL->P_CH[slot>>1];
+ if(OPL->wavesel) {
+ CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
+ }
+ return;
+ }
+}
+
+/* lock/unlock for common table */
+static int OPL_LockTable(void) {
+ num_lock++;
+ if(num_lock>1)
+ return 0;
+ /* first time */
+ cur_chip = NULL;
+ /* allocate total level table (128kb space) */
+ if(!OPLOpenTable()) {
+ num_lock--;
+ return -1;
+ }
+ return 0;
+}
+
+static void OPL_UnLockTable(void) {
+ if(num_lock)
+ num_lock--;
+ if(num_lock)
+ return;
+ /* last time */
+ cur_chip = NULL;
+ OPLCloseTable();
+}
+
+/*******************************************************************************/
+/* YM3812 local section */
+/*******************************************************************************/
+
+/* ---------- update one of chip ----------- */
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave) {
+ int i;
+ int data;
+ int16 *buf = buffer;
+ uint amsCnt = OPL->amsCnt;
+ uint vibCnt = OPL->vibCnt;
+ uint8 rythm = OPL->rythm & 0x20;
+ OPL_CH *CH, *R_CH;
+
+
+ if((void *)OPL != cur_chip) {
+ cur_chip = (void *)OPL;
+ /* channel pointers */
+ S_CH = OPL->P_CH;
+ E_CH = &S_CH[9];
+ /* rythm slot */
+ SLOT7_1 = &S_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &S_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &S_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &S_CH[8].SLOT[SLOT2];
+ /* LFO state */
+ amsIncr = OPL->amsIncr;
+ vibIncr = OPL->vibIncr;
+ ams_table = OPL->ams_table;
+ vib_table = OPL->vib_table;
+ }
+ R_CH = rythm ? &S_CH[6] : E_CH;
+ for(i = 0; i < length; i++) {
+ /* channel A channel B channel C */
+ /* LFO */
+ ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
+ vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
+ outd[0] = 0;
+ /* FM part */
+ for(CH=S_CH; CH < R_CH; CH++)
+ OPL_CALC_CH(CH);
+ /* Rythn part */
+ if(rythm)
+ OPL_CALC_RH(OPL, S_CH);
+ /* limit check */
+ data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
+ /* store to sound buffer */
+ buf[i << interleave] = data >> OPL_OUTSB;
+ }
+
+ OPL->amsCnt = amsCnt;
+ OPL->vibCnt = vibCnt;
+}
+
+/* ---------- reset a chip ---------- */
+void OPLResetChip(FM_OPL *OPL) {
+ int c,s;
+ int i;
+
+ /* reset chip */
+ OPL->mode = 0; /* normal mode */
+ OPL_STATUS_RESET(OPL, 0x7f);
+ /* reset with register write */
+ OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
+ OPLWriteReg(OPL, 0x02,0); /* Timer1 */
+ OPLWriteReg(OPL, 0x03,0); /* Timer2 */
+ OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
+ for(i = 0xff; i >= 0x20; i--)
+ OPLWriteReg(OPL,i,0);
+ /* reset OPerator parameter */
+ for(c = 0; c < OPL->max_ch ;c++ ) {
+ OPL_CH *CH = &OPL->P_CH[c];
+ /* OPL->P_CH[c].PAN = OPN_CENTER; */
+ for(s = 0; s < 2; s++ ) {
+ /* wave table */
+ CH->SLOT[s].wavetable = &SIN_TABLE[0];
+ /* CH->SLOT[s].evm = ENV_MOD_RR; */
+ CH->SLOT[s].evc = EG_OFF;
+ CH->SLOT[s].eve = EG_OFF + 1;
+ CH->SLOT[s].evs = 0;
+ }
+ }
+}
+
+/* ---------- Create a virtual YM3812 ---------- */
+/* 'rate' is sampling rate and 'bufsiz' is the size of the */
+FM_OPL *OPLCreate(int type, int clock, int rate) {
+ char *ptr;
+ FM_OPL *OPL;
+ int state_size;
+ int max_ch = 9; /* normaly 9 channels */
+
+ if( OPL_LockTable() == -1)
+ return NULL;
+ /* allocate OPL state space */
+ state_size = sizeof(FM_OPL);
+ state_size += sizeof(OPL_CH) * max_ch;
+
+ /* allocate memory block */
+ ptr = (char *)calloc(state_size, 1);
+ if(ptr == NULL)
+ return NULL;
+
+ /* clear */
+ memset(ptr, 0, state_size);
+ OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
+ OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
+
+ /* set channel state pointer */
+ OPL->type = type;
+ OPL->clock = clock;
+ OPL->rate = rate;
+ OPL->max_ch = max_ch;
+
+ /* init grobal tables */
+ OPL_initalize(OPL);
+
+ /* reset chip */
+ OPLResetChip(OPL);
+ return OPL;
+}
+
+/* ---------- Destroy one of vietual YM3812 ---------- */
+void OPLDestroy(FM_OPL *OPL) {
+ OPL_UnLockTable();
+ free(OPL);
+}
+
+/* ---------- Option handlers ---------- */
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
+ OPL->TimerHandler = TimerHandler;
+ OPL->TimerParam = channelOffset;
+}
+
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
+ OPL->IRQHandler = IRQHandler;
+ OPL->IRQParam = param;
+}
+
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
+ OPL->UpdateHandler = UpdateHandler;
+ OPL->UpdateParam = param;
+}
+
+/* ---------- YM3812 I/O interface ---------- */
+int OPLWrite(FM_OPL *OPL,int a,int v) {
+ if(!(a & 1)) { /* address port */
+ OPL->address = v & 0xff;
+ } else { /* data port */
+ if(OPL->UpdateHandler)
+ OPL->UpdateHandler(OPL->UpdateParam,0);
+ OPLWriteReg(OPL, OPL->address,v);
+ }
+ return OPL->status >> 7;
+}
+
+unsigned char OPLRead(FM_OPL *OPL,int a) {
+ if(!(a & 1)) { /* status port */
+ return OPL->status & (OPL->statusmask | 0x80);
+ }
+ /* data port */
+ switch(OPL->address) {
+ case 0x05: /* KeyBoard IN */
+ warning("OPL:read unmapped KEYBOARD port\n");
+ return 0;
+ case 0x19: /* I/O DATA */
+ warning("OPL:read unmapped I/O port\n");
+ return 0;
+ case 0x1a: /* PCM-DATA */
+ return 0;
+ default:
+ break;
+ }
+ return 0;
+}
+
+int OPLTimerOver(FM_OPL *OPL, int c) {
+ if(c) { /* Timer B */
+ OPL_STATUS_SET(OPL, 0x20);
+ } else { /* Timer A */
+ OPL_STATUS_SET(OPL, 0x40);
+ /* CSM mode key,TL controll */
+ if(OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
+ int ch;
+ if(OPL->UpdateHandler)
+ OPL->UpdateHandler(OPL->UpdateParam,0);
+ for(ch = 0; ch < 9; ch++)
+ CSMKeyControll(&OPL->P_CH[ch]);
+ }
+ }
+ /* reload timer */
+ if (OPL->TimerHandler)
+ (OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
+ return OPL->status >> 7;
+}
+
+FM_OPL *makeAdlibOPL(int rate) {
+ // We need to emulate one YM3812 chip
+ int env_bits = FMOPL_ENV_BITS_HQ;
+ int eg_ent = FMOPL_EG_ENT_HQ;
+#if defined (_WIN32_WCE) || defined(__SYMBIAN32__) || defined(PALMOS_MODE) || defined(__GP32__) || defined (GP2X) || defined(__MAEMO__) || defined(__DS__) || defined (__MINT__)
+ if (ConfMan.hasKey("FM_high_quality") && ConfMan.getBool("FM_high_quality")) {
+ env_bits = FMOPL_ENV_BITS_HQ;
+ eg_ent = FMOPL_EG_ENT_HQ;
+ } else if (ConfMan.hasKey("FM_medium_quality") && ConfMan.getBool("FM_medium_quality")) {
+ env_bits = FMOPL_ENV_BITS_MQ;
+ eg_ent = FMOPL_EG_ENT_MQ;
+ } else {
+ env_bits = FMOPL_ENV_BITS_LQ;
+ eg_ent = FMOPL_EG_ENT_LQ;
+ }
+#endif
+
+ OPLBuildTables(env_bits, eg_ent);
+ return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
+}
--- /dev/null
+++ b/opl/fmopl.h
@@ -1,0 +1,173 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL: http://scummvm.svn.sourceforge.net/svnroot/scummvm/scummvm/trunk/sound/fmopl.h $
+ * $Id: fmopl.h 38211 2009-02-15 10:07:50Z sev $
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
+
+
+#ifndef SOUND_FMOPL_H
+#define SOUND_FMOPL_H
+
+#include "common/scummsys.h"
+#include "common/util.h"
+
+enum {
+ FMOPL_ENV_BITS_HQ = 16,
+ FMOPL_ENV_BITS_MQ = 8,
+ FMOPL_ENV_BITS_LQ = 8,
+ FMOPL_EG_ENT_HQ = 4096,
+ FMOPL_EG_ENT_MQ = 1024,
+ FMOPL_EG_ENT_LQ = 128
+};
+
+
+typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec);
+typedef void (*OPL_IRQHANDLER)(int param,int irq);
+typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us);
+
+#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
+
+/* Saving is necessary for member of the 'R' mark for suspend/resume */
+/* ---------- OPL one of slot ---------- */
+typedef struct fm_opl_slot {
+ int TL; /* total level :TL << 8 */
+ int TLL; /* adjusted now TL */
+ uint8 KSR; /* key scale rate :(shift down bit) */
+ int *AR; /* attack rate :&AR_TABLE[AR<<2] */
+ int *DR; /* decay rate :&DR_TABLE[DR<<2] */
+ int SL; /* sustain level :SL_TABLE[SL] */
+ int *RR; /* release rate :&DR_TABLE[RR<<2] */
+ uint8 ksl; /* keyscale level :(shift down bits) */
+ uint8 ksr; /* key scale rate :kcode>>KSR */
+ uint mul; /* multiple :ML_TABLE[ML] */
+ uint Cnt; /* frequency count */
+ uint Incr; /* frequency step */
+
+ /* envelope generator state */
+ uint8 eg_typ;/* envelope type flag */
+ uint8 evm; /* envelope phase */
+ int evc; /* envelope counter */
+ int eve; /* envelope counter end point */
+ int evs; /* envelope counter step */
+ int evsa; /* envelope step for AR :AR[ksr] */
+ int evsd; /* envelope step for DR :DR[ksr] */
+ int evsr; /* envelope step for RR :RR[ksr] */
+
+ /* LFO */
+ uint8 ams; /* ams flag */
+ uint8 vib; /* vibrate flag */
+ /* wave selector */
+ int **wavetable;
+} OPL_SLOT;
+
+/* ---------- OPL one of channel ---------- */
+typedef struct fm_opl_channel {
+ OPL_SLOT SLOT[2];
+ uint8 CON; /* connection type */
+ uint8 FB; /* feed back :(shift down bit)*/
+ int *connect1; /* slot1 output pointer */
+ int *connect2; /* slot2 output pointer */
+ int op1_out[2]; /* slot1 output for selfeedback */
+
+ /* phase generator state */
+ uint block_fnum; /* block+fnum */
+ uint8 kcode; /* key code : KeyScaleCode */
+ uint fc; /* Freq. Increment base */
+ uint ksl_base; /* KeyScaleLevel Base step */
+ uint8 keyon; /* key on/off flag */
+} OPL_CH;
+
+/* OPL state */
+typedef struct fm_opl_f {
+ uint8 type; /* chip type */
+ int clock; /* master clock (Hz) */
+ int rate; /* sampling rate (Hz) */
+ double freqbase; /* frequency base */
+ double TimerBase; /* Timer base time (==sampling time) */
+ uint8 address; /* address register */
+ uint8 status; /* status flag */
+ uint8 statusmask; /* status mask */
+ uint mode; /* Reg.08 : CSM , notesel,etc. */
+
+ /* Timer */
+ int T[2]; /* timer counter */
+ uint8 st[2]; /* timer enable */
+
+ /* FM channel slots */
+ OPL_CH *P_CH; /* pointer of CH */
+ int max_ch; /* maximum channel */
+
+ /* Rythm sention */
+ uint8 rythm; /* Rythm mode , key flag */
+
+ /* time tables */
+ int AR_TABLE[76]; /* atttack rate tables */
+ int DR_TABLE[76]; /* decay rate tables */
+ uint FN_TABLE[1024];/* fnumber -> increment counter */
+
+ /* LFO */
+ int *ams_table;
+ int *vib_table;
+ int amsCnt;
+ int amsIncr;
+ int vibCnt;
+ int vibIncr;
+
+ /* wave selector enable flag */
+ uint8 wavesel;
+
+ /* external event callback handler */
+ OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
+ int TimerParam; /* TIMER parameter */
+ OPL_IRQHANDLER IRQHandler; /* IRQ handler */
+ int IRQParam; /* IRQ parameter */
+ OPL_UPDATEHANDLER UpdateHandler; /* stream update handler */
+ int UpdateParam; /* stream update parameter */
+
+ Common::RandomSource rnd;
+} FM_OPL;
+
+/* ---------- Generic interface section ---------- */
+#define OPL_TYPE_YM3526 (0)
+#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM);
+
+FM_OPL *OPLCreate(int type, int clock, int rate);
+void OPLDestroy(FM_OPL *OPL);
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, int channelOffset);
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param);
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler, int param);
+
+void OPLResetChip(FM_OPL *OPL);
+int OPLWrite(FM_OPL *OPL, int a, int v);
+unsigned char OPLRead(FM_OPL *OPL, int a);
+int OPLTimerOver(FM_OPL *OPL, int c);
+void OPLWriteReg(FM_OPL *OPL, int r, int v);
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave = 0);
+
+// Factory method
+FM_OPL *makeAdlibOPL(int rate);
+
+#endif