shithub: choc

Download patch

ref: 2a64882493c381b2ce9840ddd259aa5abb71a06a
parent: 65ace50d2e2a560a5bb08c1d24ffda6eb60f0e7b
author: Simon Howard <[email protected]>
date: Wed Mar 4 16:16:07 EST 2009

Add fmopl files from ScummVM.

Subversion-branch: /branches/opl-branch
Subversion-revision: 1445

--- /dev/null
+++ b/opl/fmopl.c
@@ -1,0 +1,1191 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL: http://scummvm.svn.sourceforge.net/svnroot/scummvm/scummvm/trunk/sound/fmopl.cpp $
+ * $Id: fmopl.cpp 38211 2009-02-15 10:07:50Z sev $
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdarg.h>
+#include <math.h>
+
+#include "sound/fmopl.h"
+
+#if defined (_WIN32_WCE) || defined (__SYMBIAN32__) || defined(PALMOS_MODE) || defined(__GP32__) || defined(GP2X) || defined (__MAEMO__) || defined(__DS__) || defined (__MINT__)
+#include "common/config-manager.h"
+#endif
+
+/* -------------------- preliminary define section --------------------- */
+/* attack/decay rate time rate */
+#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
+#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
+
+#define FREQ_BITS 24			/* frequency turn          */
+
+/* counter bits = 20 , octerve 7 */
+#define FREQ_RATE   (1<<(FREQ_BITS-20))
+#define TL_BITS    (FREQ_BITS+2)
+
+/* final output shift , limit minimum and maximum */
+#define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
+#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
+#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
+
+/* -------------------- quality selection --------------------- */
+
+/* sinwave entries */
+/* used static memory = SIN_ENT * 4 (byte) */
+#ifdef __DS__
+#include "dsmain.h"
+#define SIN_ENT_SHIFT 8
+#else
+#define SIN_ENT_SHIFT 11
+#endif
+#define SIN_ENT (1<<SIN_ENT_SHIFT)
+
+/* output level entries (envelope,sinwave) */
+/* envelope counter lower bits */
+int ENV_BITS;
+/* envelope output entries */
+int EG_ENT;
+
+/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
+/* used static  memory = EG_ENT*4 (byte)                     */
+int EG_OFF;								 /* OFF */
+int EG_DED;
+int EG_DST;								 /* DECAY START */
+int EG_AED;
+#define EG_AST   0                       /* ATTACK START */
+
+#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
+
+/* LFO table entries */
+#define VIB_ENT 512
+#define VIB_SHIFT (32-9)
+#define AMS_ENT 512
+#define AMS_SHIFT (32-9)
+
+#define VIB_RATE_SHIFT 8
+#define VIB_RATE (1<<VIB_RATE_SHIFT)
+
+/* -------------------- local defines , macros --------------------- */
+
+/* register number to channel number , slot offset */
+#define SLOT1 0
+#define SLOT2 1
+
+/* envelope phase */
+#define ENV_MOD_RR  0x00
+#define ENV_MOD_DR  0x01
+#define ENV_MOD_AR  0x02
+
+/* -------------------- tables --------------------- */
+static const int slot_array[32] = {
+	 0, 2, 4, 1, 3, 5,-1,-1,
+	 6, 8,10, 7, 9,11,-1,-1,
+	12,14,16,13,15,17,-1,-1,
+	-1,-1,-1,-1,-1,-1,-1,-1
+};
+
+static uint KSL_TABLE[8 * 16];
+
+static const double KSL_TABLE_SEED[8 * 16] = {
+	/* OCT 0 */
+	0.000, 0.000, 0.000, 0.000,
+	0.000, 0.000, 0.000, 0.000,
+	0.000, 0.000, 0.000, 0.000,
+	0.000, 0.000, 0.000, 0.000,
+	/* OCT 1 */
+	0.000, 0.000, 0.000, 0.000,
+	0.000, 0.000, 0.000, 0.000,
+	0.000, 0.750, 1.125, 1.500,
+	1.875, 2.250, 2.625, 3.000,
+	/* OCT 2 */
+	0.000, 0.000, 0.000, 0.000,
+	0.000, 1.125, 1.875, 2.625,
+	3.000, 3.750, 4.125, 4.500,
+	4.875, 5.250, 5.625, 6.000,
+	/* OCT 3 */
+	0.000, 0.000, 0.000, 1.875,
+	3.000, 4.125, 4.875, 5.625,
+	6.000, 6.750, 7.125, 7.500,
+	7.875, 8.250, 8.625, 9.000,
+	/* OCT 4 */
+	0.000, 0.000, 3.000, 4.875,
+	6.000, 7.125, 7.875, 8.625,
+	9.000, 9.750, 10.125, 10.500,
+	10.875, 11.250, 11.625, 12.000,
+	/* OCT 5 */
+	0.000, 3.000, 6.000, 7.875,
+	9.000, 10.125, 10.875, 11.625,
+	12.000, 12.750, 13.125, 13.500,
+	13.875, 14.250, 14.625, 15.000,
+	/* OCT 6 */
+	0.000, 6.000, 9.000, 10.875,
+	12.000, 13.125, 13.875, 14.625,
+	15.000, 15.750, 16.125, 16.500,
+	16.875, 17.250, 17.625, 18.000,
+	/* OCT 7 */
+	0.000, 9.000, 12.000, 13.875,
+	15.000, 16.125, 16.875, 17.625,
+	18.000, 18.750, 19.125, 19.500,
+	19.875, 20.250, 20.625, 21.000
+};
+
+/* sustain level table (3db per step) */
+/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
+
+static int SL_TABLE[16];
+
+static const uint SL_TABLE_SEED[16] = {
+	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
+};
+
+#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
+/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
+/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
+/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
+static int *TL_TABLE;
+
+/* pointers to TL_TABLE with sinwave output offset */
+static int **SIN_TABLE;
+
+/* LFO table */
+static int *AMS_TABLE;
+static int *VIB_TABLE;
+
+/* envelope output curve table */
+/* attack + decay + OFF */
+//static int ENV_CURVE[2*EG_ENT+1];
+//static int ENV_CURVE[2 * 4096 + 1];   // to keep it static ...
+static int *ENV_CURVE;
+
+
+/* multiple table */
+#define ML(a) (int)(a * 2)
+static const uint MUL_TABLE[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
+	ML(0.50), ML(1.00), ML(2.00),  ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
+	ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
+};
+#undef ML
+
+/* dummy attack / decay rate ( when rate == 0 ) */
+static int RATE_0[16]=
+{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+/* -------------------- static state --------------------- */
+
+/* lock level of common table */
+static int num_lock = 0;
+
+/* work table */
+static void *cur_chip = NULL;	/* current chip point */
+/* currenct chip state */
+/* static OPLSAMPLE  *bufL,*bufR; */
+static OPL_CH *S_CH;
+static OPL_CH *E_CH;
+OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
+
+static int outd[1];
+static int ams;
+static int vib;
+int *ams_table;
+int *vib_table;
+static int amsIncr;
+static int vibIncr;
+static int feedback2;		/* connect for SLOT 2 */
+
+/* --------------------- rebuild tables ------------------- */
+
+#define SC_KSL(mydb) ((uint) (mydb / (EG_STEP / 2)))
+#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
+	int i;
+
+	ENV_BITS = ENV_BITS_PARAM;
+	EG_ENT = EG_ENT_PARAM;
+	EG_OFF = ((2 * EG_ENT)<<ENV_BITS);  /* OFF          */
+	EG_DED = EG_OFF;
+	EG_DST = (EG_ENT << ENV_BITS);     /* DECAY  START */
+	EG_AED = EG_DST;
+	//EG_STEP = (96.0/EG_ENT);
+
+	for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++)
+		KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
+
+	for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++)
+		SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
+}
+
+#undef SC_KSL
+#undef SC_SL
+
+/* --------------------- subroutines  --------------------- */
+
+/* status set and IRQ handling */
+inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
+	/* set status flag */
+	OPL->status |= flag;
+	if(!(OPL->status & 0x80)) {
+		if(OPL->status & OPL->statusmask) {	/* IRQ on */
+			OPL->status |= 0x80;
+			/* callback user interrupt handler (IRQ is OFF to ON) */
+			if(OPL->IRQHandler)
+				(OPL->IRQHandler)(OPL->IRQParam,1);
+		}
+	}
+}
+
+/* status reset and IRQ handling */
+inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
+	/* reset status flag */
+	OPL->status &= ~flag;
+	if((OPL->status & 0x80)) {
+		if (!(OPL->status & OPL->statusmask)) {
+			OPL->status &= 0x7f;
+			/* callback user interrupt handler (IRQ is ON to OFF) */
+			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
+		}
+	}
+}
+
+/* IRQ mask set */
+inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
+	OPL->statusmask = flag;
+	/* IRQ handling check */
+	OPL_STATUS_SET(OPL,0);
+	OPL_STATUS_RESET(OPL,0);
+}
+
+/* ----- key on  ----- */
+inline void OPL_KEYON(OPL_SLOT *SLOT) {
+	/* sin wave restart */
+	SLOT->Cnt = 0;
+	/* set attack */
+	SLOT->evm = ENV_MOD_AR;
+	SLOT->evs = SLOT->evsa;
+	SLOT->evc = EG_AST;
+	SLOT->eve = EG_AED;
+}
+
+/* ----- key off ----- */
+inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
+	if( SLOT->evm > ENV_MOD_RR) {
+		/* set envelope counter from envleope output */
+
+		// WORKAROUND: The Kyra engine does something very strange when
+		// starting a new song. For each channel:
+		//
+		// * The release rate is set to "fastest".
+		// * Any note is keyed off.
+		// * A very low-frequency note is keyed on.
+		//
+		// Usually, what happens next is that the real notes is keyed
+		// on immediately, in which case there's no problem.
+		//
+		// However, if the note is again keyed off (because the channel
+		// begins on a rest rather than a note), the envelope counter
+		// was moved from the very lowest point on the attack curve to
+		// the very highest point on the release curve.
+		//
+		// Again, this might not be a problem, if the release rate is
+		// still set to "fastest". But in many cases, it had already
+		// been increased. And, possibly because of inaccuracies in the
+		// envelope generator, that would cause the note to "fade out"
+		// for quite a long time.
+		//
+		// What we really need is a way to find the correct starting
+		// point for the envelope counter, and that may be what the
+		// commented-out line below is meant to do. For now, simply
+		// handle the pathological case.
+
+		if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST)
+			SLOT->evc = EG_DED;
+		else if( !(SLOT->evc & EG_DST) )
+			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
+			SLOT->evc = EG_DST;
+		SLOT->eve = EG_DED;
+		SLOT->evs = SLOT->evsr;
+		SLOT->evm = ENV_MOD_RR;
+	}
+}
+
+/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
+
+/* return : envelope output */
+inline uint OPL_CALC_SLOT(OPL_SLOT *SLOT) {
+	/* calcrate envelope generator */
+	if((SLOT->evc += SLOT->evs) >= SLOT->eve) {
+		switch( SLOT->evm ) {
+		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
+			/* next DR */
+			SLOT->evm = ENV_MOD_DR;
+			SLOT->evc = EG_DST;
+			SLOT->eve = SLOT->SL;
+			SLOT->evs = SLOT->evsd;
+			break;
+		case ENV_MOD_DR: /* DECAY -> SL or RR */
+			SLOT->evc = SLOT->SL;
+			SLOT->eve = EG_DED;
+			if(SLOT->eg_typ) {
+				SLOT->evs = 0;
+			} else {
+				SLOT->evm = ENV_MOD_RR;
+				SLOT->evs = SLOT->evsr;
+			}
+			break;
+		case ENV_MOD_RR: /* RR -> OFF */
+			SLOT->evc = EG_OFF;
+			SLOT->eve = EG_OFF + 1;
+			SLOT->evs = 0;
+			break;
+		}
+	}
+	/* calcrate envelope */
+	return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
+}
+
+/* set algorythm connection */
+static void set_algorythm(OPL_CH *CH) {
+	int *carrier = &outd[0];
+	CH->connect1 = CH->CON ? carrier : &feedback2;
+	CH->connect2 = carrier;
+}
+
+/* ---------- frequency counter for operater update ---------- */
+inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
+	int ksr;
+
+	/* frequency step counter */
+	SLOT->Incr = CH->fc * SLOT->mul;
+	ksr = CH->kcode >> SLOT->KSR;
+
+	if( SLOT->ksr != ksr ) {
+		SLOT->ksr = ksr;
+		/* attack , decay rate recalcration */
+		SLOT->evsa = SLOT->AR[ksr];
+		SLOT->evsd = SLOT->DR[ksr];
+		SLOT->evsr = SLOT->RR[ksr];
+	}
+	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+}
+
+/* set multi,am,vib,EG-TYP,KSR,mul */
+inline void set_mul(FM_OPL *OPL, int slot, int v) {
+	OPL_CH   *CH   = &OPL->P_CH[slot>>1];
+	OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+
+	SLOT->mul    = MUL_TABLE[v & 0x0f];
+	SLOT->KSR    = (v & 0x10) ? 0 : 2;
+	SLOT->eg_typ = (v & 0x20) >> 5;
+	SLOT->vib    = (v & 0x40);
+	SLOT->ams    = (v & 0x80);
+	CALC_FCSLOT(CH, SLOT);
+}
+
+/* set ksl & tl */
+inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
+	OPL_CH   *CH   = &OPL->P_CH[slot>>1];
+	OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+	int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
+
+	SLOT->ksl = ksl ? 3-ksl : 31;
+	SLOT->TL  = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
+
+	if(!(OPL->mode & 0x80)) {	/* not CSM latch total level */
+		SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
+	}
+}
+
+/* set attack rate & decay rate  */
+inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
+	OPL_CH   *CH   = &OPL->P_CH[slot>>1];
+	OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+	int ar = v >> 4;
+	int dr = v & 0x0f;
+
+	SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
+	SLOT->evsa = SLOT->AR[SLOT->ksr];
+	if(SLOT->evm == ENV_MOD_AR)
+		SLOT->evs = SLOT->evsa;
+
+	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
+	SLOT->evsd = SLOT->DR[SLOT->ksr];
+	if(SLOT->evm == ENV_MOD_DR)
+		SLOT->evs = SLOT->evsd;
+}
+
+/* set sustain level & release rate */
+inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
+	OPL_CH   *CH   = &OPL->P_CH[slot>>1];
+	OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+	int sl = v >> 4;
+	int rr = v & 0x0f;
+
+	SLOT->SL = SL_TABLE[sl];
+	if(SLOT->evm == ENV_MOD_DR)
+		SLOT->eve = SLOT->SL;
+	SLOT->RR = &OPL->DR_TABLE[rr<<2];
+	SLOT->evsr = SLOT->RR[SLOT->ksr];
+	if(SLOT->evm == ENV_MOD_RR)
+		SLOT->evs = SLOT->evsr;
+}
+
+/* operator output calcrator */
+
+#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env]
+/* ---------- calcrate one of channel ---------- */
+inline void OPL_CALC_CH(OPL_CH *CH) {
+	uint env_out;
+	OPL_SLOT *SLOT;
+
+	feedback2 = 0;
+	/* SLOT 1 */
+	SLOT = &CH->SLOT[SLOT1];
+	env_out=OPL_CALC_SLOT(SLOT);
+	if(env_out < (uint)(EG_ENT - 1)) {
+		/* PG */
+		if(SLOT->vib)
+			SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+		else
+			SLOT->Cnt += SLOT->Incr;
+		/* connection */
+		if(CH->FB) {
+			int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
+			CH->op1_out[1] = CH->op1_out[0];
+			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+		} else {
+			*CH->connect1 += OP_OUT(SLOT, env_out, 0);
+		}
+	} else {
+		CH->op1_out[1] = CH->op1_out[0];
+		CH->op1_out[0] = 0;
+	}
+	/* SLOT 2 */
+	SLOT = &CH->SLOT[SLOT2];
+	env_out=OPL_CALC_SLOT(SLOT);
+	if(env_out < (uint)(EG_ENT - 1)) {
+		/* PG */
+		if(SLOT->vib)
+			SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+		else
+			SLOT->Cnt += SLOT->Incr;
+		/* connection */
+		outd[0] += OP_OUT(SLOT, env_out, feedback2);
+	}
+}
+
+/* ---------- calcrate rythm block ---------- */
+#define WHITE_NOISE_db 6.0
+inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) {
+	uint env_tam, env_sd, env_top, env_hh;
+	// This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)),
+	// but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to
+	// int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024,
+	// or 128, so we can safely avoid any FP ops.
+	int whitenoise = OPL->rnd.getRandomBit() * (EG_ENT>>4);
+
+	int tone8;
+
+	OPL_SLOT *SLOT;
+	int env_out;
+
+	/* BD : same as FM serial mode and output level is large */
+	feedback2 = 0;
+	/* SLOT 1 */
+	SLOT = &CH[6].SLOT[SLOT1];
+	env_out = OPL_CALC_SLOT(SLOT);
+	if(env_out < EG_ENT-1) {
+		/* PG */
+		if(SLOT->vib)
+			SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+		else
+			SLOT->Cnt += SLOT->Incr;
+		/* connection */
+		if(CH[6].FB) {
+			int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
+			CH[6].op1_out[1] = CH[6].op1_out[0];
+			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+		}
+		else {
+			feedback2 = OP_OUT(SLOT, env_out, 0);
+		}
+	} else {
+		feedback2 = 0;
+		CH[6].op1_out[1] = CH[6].op1_out[0];
+		CH[6].op1_out[0] = 0;
+	}
+	/* SLOT 2 */
+	SLOT = &CH[6].SLOT[SLOT2];
+	env_out = OPL_CALC_SLOT(SLOT);
+	if(env_out < EG_ENT-1) {
+		/* PG */
+		if(SLOT->vib)
+			SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+		else
+			SLOT->Cnt += SLOT->Incr;
+		/* connection */
+		outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
+	}
+
+	// SD  (17) = mul14[fnum7] + white noise
+	// TAM (15) = mul15[fnum8]
+	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
+	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
+	env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
+	env_tam =OPL_CALC_SLOT(SLOT8_1);
+	env_top = OPL_CALC_SLOT(SLOT8_2);
+	env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
+
+	/* PG */
+	if(SLOT7_1->vib)
+		SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1);
+	else
+		SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
+	if(SLOT7_2->vib)
+		SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3);
+	else
+		SLOT7_2->Cnt += (CH[7].fc * 8);
+	if(SLOT8_1->vib)
+		SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT;
+	else
+		SLOT8_1->Cnt += SLOT8_1->Incr;
+	if(SLOT8_2->vib)
+		SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4);
+	else
+		SLOT8_2->Cnt += (CH[8].fc * 48);
+
+	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
+
+	/* SD */
+	if(env_sd < (uint)(EG_ENT - 1))
+		outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
+	/* TAM */
+	if(env_tam < (uint)(EG_ENT - 1))
+		outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
+	/* TOP-CY */
+	if(env_top < (uint)(EG_ENT - 1))
+		outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
+	/* HH */
+	if(env_hh  < (uint)(EG_ENT-1))
+		outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
+}
+
+/* ----------- initialize time tabls ----------- */
+static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
+	int i;
+	double rate;
+
+	/* make attack rate & decay rate tables */
+	for (i = 0; i < 4; i++)
+		OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
+	for (i = 4; i <= 60; i++) {
+		rate = OPL->freqbase;						/* frequency rate */
+		if(i < 60)
+			rate *= 1.0 + (i & 3) * 0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
+		rate *= 1 << ((i >> 2) - 1);						/* b2-5 : shift bit */
+		rate *= (double)(EG_ENT << ENV_BITS);
+		OPL->AR_TABLE[i] = (int)(rate / ARRATE);
+		OPL->DR_TABLE[i] = (int)(rate / DRRATE);
+	}
+	for (i = 60; i < 76; i++) {
+		OPL->AR_TABLE[i] = EG_AED-1;
+		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
+	}
+}
+
+/* ---------- generic table initialize ---------- */
+static int OPLOpenTable(void) {
+	int s,t;
+	double rate;
+	int i,j;
+	double pom;
+
+#ifdef __DS__
+	DS::fastRamReset();
+
+	TL_TABLE = (int *) DS::fastRamAlloc(TL_MAX * 2 * sizeof(int *));
+	SIN_TABLE = (int **) DS::fastRamAlloc(SIN_ENT * 4 * sizeof(int *));
+#else
+
+	/* allocate dynamic tables */
+	if((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
+		return 0;
+
+	if((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
+		free(TL_TABLE);
+		return 0;
+	}
+#endif
+
+	if((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
+		free(TL_TABLE);
+		free(SIN_TABLE);
+		return 0;
+	}
+
+	if((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
+		free(TL_TABLE);
+		free(SIN_TABLE);
+		free(AMS_TABLE);
+		return 0;
+	}
+	/* make total level table */
+	for (t = 0; t < EG_ENT - 1 ; t++) {
+		rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20);	/* dB -> voltage */
+		TL_TABLE[         t] =  (int)rate;
+		TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
+	}
+	/* fill volume off area */
+	for (t = EG_ENT - 1; t < TL_MAX; t++) {
+		TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
+	}
+
+	/* make sinwave table (total level offet) */
+	/* degree 0 = degree 180                   = off */
+	SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
+	for (s = 1;s <= SIN_ENT / 4; s++) {
+		pom = sin(2 * PI * s / SIN_ENT); /* sin     */
+		pom = 20 * log10(1 / pom);	   /* decibel */
+		j = int(pom / EG_STEP);         /* TL_TABLE steps */
+
+		/* degree 0   -  90    , degree 180 -  90 : plus section */
+		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
+		/* degree 180 - 270    , degree 360 - 270 : minus section */
+		SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
+	}
+	for (s = 0;s < SIN_ENT; s++) {
+		SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
+		SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
+		SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
+	}
+
+
+	ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1));
+
+	/* envelope counter -> envelope output table */
+	for (i=0; i < EG_ENT; i++) {
+		/* ATTACK curve */
+		pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
+		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
+		ENV_CURVE[i] = (int)pom;
+		/* DECAY ,RELEASE curve */
+		ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
+	}
+	/* off */
+	ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
+	/* make LFO ams table */
+	for (i=0; i < AMS_ENT; i++) {
+		pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */
+		AMS_TABLE[i]         = (int)((1.0 / EG_STEP) * pom); /* 1dB   */
+		AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
+	}
+	/* make LFO vibrate table */
+	for (i=0; i < VIB_ENT; i++) {
+		/* 100cent = 1seminote = 6% ?? */
+		pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */
+		VIB_TABLE[i]         = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
+		VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
+	}
+	return 1;
+}
+
+static void OPLCloseTable(void) {
+	free(TL_TABLE);
+	free(SIN_TABLE);
+	free(AMS_TABLE);
+	free(VIB_TABLE);
+	free(ENV_CURVE);
+}
+
+/* CSM Key Controll */
+inline void CSMKeyControll(OPL_CH *CH) {
+	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
+	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
+	/* all key off */
+	OPL_KEYOFF(slot1);
+	OPL_KEYOFF(slot2);
+	/* total level latch */
+	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+	/* key on */
+	CH->op1_out[0] = CH->op1_out[1] = 0;
+	OPL_KEYON(slot1);
+	OPL_KEYON(slot2);
+}
+
+/* ---------- opl initialize ---------- */
+static void OPL_initalize(FM_OPL *OPL) {
+	int fn;
+
+	/* frequency base */
+	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
+	/* Timer base time */
+	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
+	/* make time tables */
+	init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
+	/* make fnumber -> increment counter table */
+	for( fn=0; fn < 1024; fn++) {
+		OPL->FN_TABLE[fn] = (uint)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
+	}
+	/* LFO freq.table */
+	OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
+	OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
+}
+
+/* ---------- write a OPL registers ---------- */
+void OPLWriteReg(FM_OPL *OPL, int r, int v) {
+	OPL_CH *CH;
+	int slot;
+	uint block_fnum;
+
+	switch(r & 0xe0) {
+	case 0x00: /* 00-1f:controll */
+		switch(r & 0x1f) {
+		case 0x01:
+			/* wave selector enable */
+			if(OPL->type&OPL_TYPE_WAVESEL) {
+				OPL->wavesel = v & 0x20;
+				if(!OPL->wavesel) {
+					/* preset compatible mode */
+					int c;
+					for(c=0; c<OPL->max_ch; c++) {
+						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
+						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
+					}
+				}
+			}
+			return;
+		case 0x02:	/* Timer 1 */
+			OPL->T[0] = (256-v) * 4;
+			break;
+		case 0x03:	/* Timer 2 */
+			OPL->T[1] = (256-v) * 16;
+			return;
+		case 0x04:	/* IRQ clear / mask and Timer enable */
+			if(v & 0x80) {	/* IRQ flag clear */
+				OPL_STATUS_RESET(OPL, 0x7f);
+			} else {	/* set IRQ mask ,timer enable*/
+				uint8 st1 = v & 1;
+				uint8 st2 = (v >> 1) & 1;
+				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
+				OPL_STATUS_RESET(OPL, v & 0x78);
+				OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
+				/* timer 2 */
+				if(OPL->st[1] != st2) {
+					double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
+					OPL->st[1] = st2;
+					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
+				}
+				/* timer 1 */
+				if(OPL->st[0] != st1) {
+					double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
+					OPL->st[0] = st1;
+					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
+				}
+			}
+			return;
+		}
+		break;
+	case 0x20:	/* am,vib,ksr,eg type,mul */
+		slot = slot_array[r&0x1f];
+		if(slot == -1)
+			return;
+		set_mul(OPL,slot,v);
+		return;
+	case 0x40:
+		slot = slot_array[r&0x1f];
+		if(slot == -1)
+			return;
+		set_ksl_tl(OPL,slot,v);
+		return;
+	case 0x60:
+		slot = slot_array[r&0x1f];
+		if(slot == -1)
+			return;
+		set_ar_dr(OPL,slot,v);
+		return;
+	case 0x80:
+		slot = slot_array[r&0x1f];
+		if(slot == -1)
+			return;
+		set_sl_rr(OPL,slot,v);
+		return;
+	case 0xa0:
+		switch(r) {
+		case 0xbd:
+			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
+			{
+			uint8 rkey = OPL->rythm ^ v;
+			OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
+			OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
+			OPL->rythm  = v & 0x3f;
+			if(OPL->rythm & 0x20) {
+				/* BD key on/off */
+				if(rkey & 0x10) {
+					if(v & 0x10) {
+						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
+						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
+						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
+					} else {
+						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
+						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
+					}
+				}
+				/* SD key on/off */
+				if(rkey & 0x08) {
+					if(v & 0x08)
+						OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
+					else
+						OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
+				}/* TAM key on/off */
+				if(rkey & 0x04) {
+					if(v & 0x04)
+						OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
+					else
+						OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
+				}
+				/* TOP-CY key on/off */
+				if(rkey & 0x02) {
+					if(v & 0x02)
+						OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
+					else
+						OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
+				}
+				/* HH key on/off */
+				if(rkey & 0x01) {
+					if(v & 0x01)
+						OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
+					else
+						OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
+				}
+			}
+			}
+			return;
+
+		default:
+			break;
+		}
+		/* keyon,block,fnum */
+		if((r & 0x0f) > 8)
+			return;
+		CH = &OPL->P_CH[r & 0x0f];
+		if(!(r&0x10)) {	/* a0-a8 */
+			block_fnum  = (CH->block_fnum & 0x1f00) | v;
+		} else {	/* b0-b8 */
+			int keyon = (v >> 5) & 1;
+			block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
+			if(CH->keyon != keyon) {
+				if((CH->keyon=keyon)) {
+					CH->op1_out[0] = CH->op1_out[1] = 0;
+					OPL_KEYON(&CH->SLOT[SLOT1]);
+					OPL_KEYON(&CH->SLOT[SLOT2]);
+				} else {
+					OPL_KEYOFF(&CH->SLOT[SLOT1]);
+					OPL_KEYOFF(&CH->SLOT[SLOT2]);
+				}
+			}
+		}
+		/* update */
+		if(CH->block_fnum != block_fnum) {
+			int blockRv = 7 - (block_fnum >> 10);
+			int fnum = block_fnum & 0x3ff;
+			CH->block_fnum = block_fnum;
+			CH->ksl_base = KSL_TABLE[block_fnum >> 6];
+			CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
+			CH->kcode = CH->block_fnum >> 9;
+			if((OPL->mode & 0x40) && CH->block_fnum & 0x100)
+				CH->kcode |=1;
+			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
+			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
+		}
+		return;
+	case 0xc0:
+		/* FB,C */
+		if((r & 0x0f) > 8)
+			return;
+		CH = &OPL->P_CH[r&0x0f];
+		{
+			int feedback = (v >> 1) & 7;
+			CH->FB = feedback ? (8 + 1) - feedback : 0;
+			CH->CON = v & 1;
+			set_algorythm(CH);
+		}
+		return;
+	case 0xe0: /* wave type */
+		slot = slot_array[r & 0x1f];
+		if(slot == -1)
+			return;
+		CH = &OPL->P_CH[slot>>1];
+		if(OPL->wavesel) {
+			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
+		}
+		return;
+	}
+}
+
+/* lock/unlock for common table */
+static int OPL_LockTable(void) {
+	num_lock++;
+	if(num_lock>1)
+		return 0;
+	/* first time */
+	cur_chip = NULL;
+	/* allocate total level table (128kb space) */
+	if(!OPLOpenTable()) {
+		num_lock--;
+		return -1;
+	}
+	return 0;
+}
+
+static void OPL_UnLockTable(void) {
+	if(num_lock)
+		num_lock--;
+	if(num_lock)
+		return;
+	/* last time */
+	cur_chip = NULL;
+	OPLCloseTable();
+}
+
+/*******************************************************************************/
+/*		YM3812 local section                                                   */
+/*******************************************************************************/
+
+/* ---------- update one of chip ----------- */
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave) {
+	int i;
+	int data;
+	int16 *buf = buffer;
+	uint amsCnt = OPL->amsCnt;
+	uint vibCnt = OPL->vibCnt;
+	uint8 rythm = OPL->rythm & 0x20;
+	OPL_CH *CH, *R_CH;
+
+
+	if((void *)OPL != cur_chip) {
+		cur_chip = (void *)OPL;
+		/* channel pointers */
+		S_CH = OPL->P_CH;
+		E_CH = &S_CH[9];
+		/* rythm slot */
+		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
+		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
+		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
+		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
+		/* LFO state */
+		amsIncr = OPL->amsIncr;
+		vibIncr = OPL->vibIncr;
+		ams_table = OPL->ams_table;
+		vib_table = OPL->vib_table;
+	}
+	R_CH = rythm ? &S_CH[6] : E_CH;
+	for(i = 0; i < length; i++) {
+		/*            channel A         channel B         channel C      */
+		/* LFO */
+		ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
+		vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
+		outd[0] = 0;
+		/* FM part */
+		for(CH=S_CH; CH < R_CH; CH++)
+			OPL_CALC_CH(CH);
+		/* Rythn part */
+		if(rythm)
+			OPL_CALC_RH(OPL, S_CH);
+		/* limit check */
+		data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
+		/* store to sound buffer */
+		buf[i << interleave] = data >> OPL_OUTSB;
+	}
+
+	OPL->amsCnt = amsCnt;
+	OPL->vibCnt = vibCnt;
+}
+
+/* ---------- reset a chip ---------- */
+void OPLResetChip(FM_OPL *OPL) {
+	int c,s;
+	int i;
+
+	/* reset chip */
+	OPL->mode = 0;	/* normal mode */
+	OPL_STATUS_RESET(OPL, 0x7f);
+	/* reset with register write */
+	OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
+	OPLWriteReg(OPL, 0x02,0); /* Timer1 */
+	OPLWriteReg(OPL, 0x03,0); /* Timer2 */
+	OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
+	for(i = 0xff; i >= 0x20; i--)
+		OPLWriteReg(OPL,i,0);
+	/* reset OPerator parameter */
+	for(c = 0; c < OPL->max_ch ;c++ ) {
+		OPL_CH *CH = &OPL->P_CH[c];
+		/* OPL->P_CH[c].PAN = OPN_CENTER; */
+		for(s = 0; s < 2; s++ ) {
+			/* wave table */
+			CH->SLOT[s].wavetable = &SIN_TABLE[0];
+			/* CH->SLOT[s].evm = ENV_MOD_RR; */
+			CH->SLOT[s].evc = EG_OFF;
+			CH->SLOT[s].eve = EG_OFF + 1;
+			CH->SLOT[s].evs = 0;
+		}
+	}
+}
+
+/* ----------  Create a virtual YM3812 ----------       */
+/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
+FM_OPL *OPLCreate(int type, int clock, int rate) {
+	char *ptr;
+	FM_OPL *OPL;
+	int state_size;
+	int max_ch = 9; /* normaly 9 channels */
+
+	if( OPL_LockTable() == -1)
+		return NULL;
+	/* allocate OPL state space */
+	state_size  = sizeof(FM_OPL);
+	state_size += sizeof(OPL_CH) * max_ch;
+
+	/* allocate memory block */
+	ptr = (char *)calloc(state_size, 1);
+	if(ptr == NULL)
+		return NULL;
+
+	/* clear */
+	memset(ptr, 0, state_size);
+	OPL       = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
+	OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
+
+	/* set channel state pointer */
+	OPL->type  = type;
+	OPL->clock = clock;
+	OPL->rate  = rate;
+	OPL->max_ch = max_ch;
+
+	/* init grobal tables */
+	OPL_initalize(OPL);
+
+	/* reset chip */
+	OPLResetChip(OPL);
+	return OPL;
+}
+
+/* ----------  Destroy one of vietual YM3812 ----------       */
+void OPLDestroy(FM_OPL *OPL) {
+	OPL_UnLockTable();
+	free(OPL);
+}
+
+/* ----------  Option handlers ----------       */
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
+	OPL->TimerHandler   = TimerHandler;
+	OPL->TimerParam = channelOffset;
+}
+
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
+	OPL->IRQHandler     = IRQHandler;
+	OPL->IRQParam = param;
+}
+
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
+	OPL->UpdateHandler = UpdateHandler;
+	OPL->UpdateParam = param;
+}
+
+/* ---------- YM3812 I/O interface ---------- */
+int OPLWrite(FM_OPL *OPL,int a,int v) {
+	if(!(a & 1)) {	/* address port */
+		OPL->address = v & 0xff;
+	} else {	/* data port */
+		if(OPL->UpdateHandler)
+			OPL->UpdateHandler(OPL->UpdateParam,0);
+		OPLWriteReg(OPL, OPL->address,v);
+	}
+	return OPL->status >> 7;
+}
+
+unsigned char OPLRead(FM_OPL *OPL,int a) {
+	if(!(a & 1)) {	/* status port */
+		return OPL->status & (OPL->statusmask | 0x80);
+	}
+	/* data port */
+	switch(OPL->address) {
+	case 0x05: /* KeyBoard IN */
+		warning("OPL:read unmapped KEYBOARD port\n");
+		return 0;
+	case 0x19: /* I/O DATA    */
+		warning("OPL:read unmapped I/O port\n");
+		return 0;
+	case 0x1a: /* PCM-DATA    */
+		return 0;
+	default:
+		break;
+	}
+	return 0;
+}
+
+int OPLTimerOver(FM_OPL *OPL, int c) {
+	if(c) {	/* Timer B */
+		OPL_STATUS_SET(OPL, 0x20);
+	} else {	/* Timer A */
+		OPL_STATUS_SET(OPL, 0x40);
+		/* CSM mode key,TL controll */
+		if(OPL->mode & 0x80) {	/* CSM mode total level latch and auto key on */
+			int ch;
+			if(OPL->UpdateHandler)
+				OPL->UpdateHandler(OPL->UpdateParam,0);
+			for(ch = 0; ch < 9; ch++)
+				CSMKeyControll(&OPL->P_CH[ch]);
+		}
+	}
+	/* reload timer */
+	if (OPL->TimerHandler)
+		(OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
+	return OPL->status >> 7;
+}
+
+FM_OPL *makeAdlibOPL(int rate) {
+	// We need to emulate one YM3812 chip
+	int env_bits = FMOPL_ENV_BITS_HQ;
+	int eg_ent = FMOPL_EG_ENT_HQ;
+#if defined (_WIN32_WCE) || defined(__SYMBIAN32__) || defined(PALMOS_MODE) || defined(__GP32__) || defined (GP2X) || defined(__MAEMO__) || defined(__DS__) || defined (__MINT__)
+	if (ConfMan.hasKey("FM_high_quality") && ConfMan.getBool("FM_high_quality")) {
+		env_bits = FMOPL_ENV_BITS_HQ;
+		eg_ent = FMOPL_EG_ENT_HQ;
+	} else if (ConfMan.hasKey("FM_medium_quality") && ConfMan.getBool("FM_medium_quality")) {
+		env_bits = FMOPL_ENV_BITS_MQ;
+		eg_ent = FMOPL_EG_ENT_MQ;
+	} else {
+		env_bits = FMOPL_ENV_BITS_LQ;
+		eg_ent = FMOPL_EG_ENT_LQ;
+	}
+#endif
+
+	OPLBuildTables(env_bits, eg_ent);
+	return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
+}
--- /dev/null
+++ b/opl/fmopl.h
@@ -1,0 +1,173 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL: http://scummvm.svn.sourceforge.net/svnroot/scummvm/scummvm/trunk/sound/fmopl.h $
+ * $Id: fmopl.h 38211 2009-02-15 10:07:50Z sev $
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
+
+
+#ifndef SOUND_FMOPL_H
+#define SOUND_FMOPL_H
+
+#include "common/scummsys.h"
+#include "common/util.h"
+
+enum {
+	FMOPL_ENV_BITS_HQ = 16,
+	FMOPL_ENV_BITS_MQ = 8,
+	FMOPL_ENV_BITS_LQ = 8,
+	FMOPL_EG_ENT_HQ = 4096,
+	FMOPL_EG_ENT_MQ = 1024,
+	FMOPL_EG_ENT_LQ = 128
+};
+
+
+typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec);
+typedef void (*OPL_IRQHANDLER)(int param,int irq);
+typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us);
+
+#define OPL_TYPE_WAVESEL   0x01  /* waveform select    */
+
+/* Saving is necessary for member of the 'R' mark for suspend/resume */
+/* ---------- OPL one of slot  ---------- */
+typedef struct fm_opl_slot {
+	int TL;		/* total level     :TL << 8				*/
+	int TLL;	/* adjusted now TL						*/
+	uint8 KSR;	/* key scale rate  :(shift down bit)	*/
+	int *AR;	/* attack rate     :&AR_TABLE[AR<<2]	*/
+	int *DR;	/* decay rate      :&DR_TABLE[DR<<2]	*/
+	int SL;		/* sustain level   :SL_TABLE[SL]		*/
+	int *RR;	/* release rate    :&DR_TABLE[RR<<2]	*/
+	uint8 ksl;	/* keyscale level  :(shift down bits)	*/
+	uint8 ksr;	/* key scale rate  :kcode>>KSR			*/
+	uint mul;	/* multiple        :ML_TABLE[ML]		*/
+	uint Cnt;	/* frequency count						*/
+	uint Incr;	/* frequency step						*/
+
+	/* envelope generator state */
+	uint8 eg_typ;/* envelope type flag					*/
+	uint8 evm;	/* envelope phase						*/
+	int evc;	/* envelope counter						*/
+	int eve;	/* envelope counter end point			*/
+	int evs;	/* envelope counter step				*/
+	int evsa;	/* envelope step for AR :AR[ksr]		*/
+	int evsd;	/* envelope step for DR :DR[ksr]		*/
+	int evsr;	/* envelope step for RR :RR[ksr]		*/
+
+	/* LFO */
+	uint8 ams;		/* ams flag                            */
+	uint8 vib;		/* vibrate flag                        */
+	/* wave selector */
+	int **wavetable;
+} OPL_SLOT;
+
+/* ---------- OPL one of channel  ---------- */
+typedef struct fm_opl_channel {
+	OPL_SLOT SLOT[2];
+	uint8 CON;			/* connection type					*/
+	uint8 FB;			/* feed back       :(shift down bit)*/
+	int *connect1;		/* slot1 output pointer				*/
+	int *connect2;		/* slot2 output pointer				*/
+	int op1_out[2];		/* slot1 output for selfeedback		*/
+
+	/* phase generator state */
+	uint block_fnum;	/* block+fnum						*/
+	uint8 kcode;		/* key code        : KeyScaleCode	*/
+	uint fc;			/* Freq. Increment base				*/
+	uint ksl_base;		/* KeyScaleLevel Base step			*/
+	uint8 keyon;		/* key on/off flag					*/
+} OPL_CH;
+
+/* OPL state */
+typedef struct fm_opl_f {
+	uint8 type;			/* chip type                         */
+	int clock;			/* master clock  (Hz)                */
+	int rate;			/* sampling rate (Hz)                */
+	double freqbase;	/* frequency base                    */
+	double TimerBase;	/* Timer base time (==sampling time) */
+	uint8 address;		/* address register                  */
+	uint8 status;		/* status flag                       */
+	uint8 statusmask;	/* status mask                       */
+	uint mode;			/* Reg.08 : CSM , notesel,etc.       */
+
+	/* Timer */
+	int T[2];			/* timer counter                     */
+	uint8 st[2];		/* timer enable                      */
+
+	/* FM channel slots */
+	OPL_CH *P_CH;		/* pointer of CH                     */
+	int	max_ch;			/* maximum channel                   */
+
+	/* Rythm sention */
+	uint8 rythm;		/* Rythm mode , key flag */
+
+	/* time tables */
+	int AR_TABLE[76];	/* atttack rate tables				*/
+	int DR_TABLE[76];	/* decay rate tables				*/
+	uint FN_TABLE[1024];/* fnumber -> increment counter		*/
+
+	/* LFO */
+	int *ams_table;
+	int *vib_table;
+	int amsCnt;
+	int amsIncr;
+	int vibCnt;
+	int vibIncr;
+
+	/* wave selector enable flag */
+	uint8 wavesel;
+
+	/* external event callback handler */
+	OPL_TIMERHANDLER  TimerHandler;		/* TIMER handler   */
+	int TimerParam;						/* TIMER parameter */
+	OPL_IRQHANDLER    IRQHandler;		/* IRQ handler    */
+	int IRQParam;						/* IRQ parameter  */
+	OPL_UPDATEHANDLER UpdateHandler;	/* stream update handler   */
+	int UpdateParam;					/* stream update parameter */
+
+	Common::RandomSource rnd;
+} FM_OPL;
+
+/* ---------- Generic interface section ---------- */
+#define OPL_TYPE_YM3526 (0)
+#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM);
+
+FM_OPL *OPLCreate(int type, int clock, int rate);
+void OPLDestroy(FM_OPL *OPL);
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, int channelOffset);
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param);
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler, int param);
+
+void OPLResetChip(FM_OPL *OPL);
+int OPLWrite(FM_OPL *OPL, int a, int v);
+unsigned char OPLRead(FM_OPL *OPL, int a);
+int OPLTimerOver(FM_OPL *OPL, int c);
+void OPLWriteReg(FM_OPL *OPL, int r, int v);
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave = 0);
+
+// Factory method
+FM_OPL *makeAdlibOPL(int rate);
+
+#endif