ref: fc32e1c8cc67b0481d3e563e39dd11f120585b7f
parent: 4af444400f766d82f6c0a2d8ab935c415d155c94
author: Alexei Podtelezhnikov <[email protected]>
date: Mon Aug 19 18:57:05 EDT 2013
[base] Enable new algorithm for BBox_Cubic_Check. * src/base/ftbbox.c: Enable new BBox_Cubic_Check algorithm, remove the old one. Improve comments.
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,10 @@
+2013-08-19 Alexei Podtelezhnikov <[email protected]>
+
+ [base] Enable new algorithm for BBox_Cubic_Check.
+
+ * src/base/ftbbox.c: Enable new BBox_Cubic_Check algorithm, remove the
+ old one. Improve comments.
+
2013-08-18 Werner Lemberg <[email protected]>
* builds/unix/unix-def.in (freetype2.pc): Don't set executable bit.
--- a/src/base/ftbbox.c
+++ b/src/base/ftbbox.c
@@ -109,9 +109,9 @@
FT_Pos* max )
{
/* This function is only called when a control off-point is outside */
- /* the bbox. This also means there must be a local extremum within */
- /* the segment with the value of (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */
- /* Offsetting from the closest point to the extermum, y2, we get */
+ /* the bbox that contains all on-points. It finds a local extremum */
+ /* within the segment, equal to (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */
+ /* Or, offsetting from y2, we get */
y1 -= y2;
y3 -= y2;
@@ -185,8 +185,8 @@
/* */
/* <Description> */
/* Finds the extrema of a 1-dimensional cubic Bezier curve and */
- /* updates a bounding range. This version uses splitting because we */
- /* don't want to use square roots and extra accuracy. */
+ /* updates a bounding range. This version uses iterative splitting */
+ /* because it is faster than the exact solution with square roots. */
/* */
/* <Input> */
/* p1 :: The start coordinate. */
@@ -203,17 +203,15 @@
/* max :: The address of the current maximum. */
/* */
-#if 0
-
static FT_Pos
- update_max( FT_Pos q1,
- FT_Pos q2,
- FT_Pos q3,
- FT_Pos q4,
- FT_Pos max )
+ update_cubic_max( FT_Pos q1,
+ FT_Pos q2,
+ FT_Pos q3,
+ FT_Pos q4,
+ FT_Pos max )
{
- /* for a conic segment to possibly reach new maximum */
- /* one of its off-points must be above the current value */
+ /* for a cubic segment to possibly reach new maximum, at least */
+ /* one of its off-points must stay above the current value */
while ( q2 > max || q3 > max )
{
/* determine which half contains the maximum and split */
@@ -267,13 +265,15 @@
FT_Pos nmin, nmax;
FT_Int shift;
- /* This implementation relies on iterative bisection of the segment. */
- /* The fixed-point arithmentic of bisection is inherently stable but */
- /* may loose accuracy in the two lowest bits. To compensate, we */
- /* upscale the segment if there is room. Large values may need to be */
- /* downscaled to avoid overflows during bisection bisection. This */
- /* function is only called when a control off-point is outside the */
- /* the bbox and, thus, has the top absolute value among arguments. */
+ /* This function is only called when a control off-point is outside */
+ /* the bbox that contains all on-points. It finds a local extremum */
+ /* within the segment using iterative bisection of the segment. */
+ /* The fixed-point arithmentic of bisection is inherently stable */
+ /* but may loose accuracy in the two lowest bits. To compensate, */
+ /* we upscale the segment if there is room. Large values may need */
+ /* to be downscaled to avoid overflows during bisection bisection. */
+ /* The control off-point outside the bbox is likely to have the top */
+ /* absolute value among arguments. */
shift = 27 - FT_MSB( FT_ABS( p2 ) | FT_ABS( p3 ) );
@@ -282,7 +282,7 @@
/* upscaling too much just wastes time */
if ( shift > 2 )
shift = 2;
-
+
p1 <<= shift;
p2 <<= shift;
p3 <<= shift;
@@ -290,7 +290,7 @@
nmin = *min << shift;
nmax = *max << shift;
}
- else
+ else
{
p1 >>= -shift;
p2 >>= -shift;
@@ -300,10 +300,10 @@
nmax = *max >> -shift;
}
- nmax = update_max( p1, p2, p3, p4, nmax );
+ nmax = update_cubic_max( p1, p2, p3, p4, nmax );
/* now flip the signs to update the minimum */
- nmin = -update_max( -p1, -p2, -p3, -p4, -nmin );
+ nmin = -update_cubic_max( -p1, -p2, -p3, -p4, -nmin );
if ( shift > 0 )
{
@@ -321,172 +321,6 @@
if ( nmax > *max )
*max = nmax;
}
-
-#else
-
- static void
- test_cubic_extrema( FT_Pos y1,
- FT_Pos y2,
- FT_Pos y3,
- FT_Pos y4,
- FT_Fixed u,
- FT_Pos* min,
- FT_Pos* max )
- {
- /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
- FT_Pos b = y3 - 2*y2 + y1;
- FT_Pos c = y2 - y1;
- FT_Pos d = y1;
- FT_Pos y;
- FT_Fixed uu;
-
- FT_UNUSED ( y4 );
-
-
- /* The polynomial is */
- /* */
- /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
- /* */
- /* dP/dx = 3a*x^2 + 6b*x + 3c . */
- /* */
- /* However, we also have */
- /* */
- /* dP/dx(u) = 0 , */
- /* */
- /* which implies by subtraction that */
- /* */
- /* P(u) = b*u^2 + 2c*u + d . */
-
- if ( u > 0 && u < 0x10000L )
- {
- uu = FT_MulFix( u, u );
- y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
-
- if ( y < *min ) *min = y;
- if ( y > *max ) *max = y;
- }
- }
-
-
- static void
- BBox_Cubic_Check( FT_Pos y1,
- FT_Pos y2,
- FT_Pos y3,
- FT_Pos y4,
- FT_Pos* min,
- FT_Pos* max )
- {
- /* always compare first and last points */
- if ( y1 < *min ) *min = y1;
- else if ( y1 > *max ) *max = y1;
-
- if ( y4 < *min ) *min = y4;
- else if ( y4 > *max ) *max = y4;
-
- /* now, try to see if there are split points here */
- if ( y1 <= y4 )
- {
- /* flat or ascending arc test */
- if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
- return;
- }
- else /* y1 > y4 */
- {
- /* descending arc test */
- if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
- return;
- }
-
- /* There are some split points. Find them. */
- /* We already made sure that a, b, and c below cannot be all zero. */
- {
- FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
- FT_Pos b = y3 - 2*y2 + y1;
- FT_Pos c = y2 - y1;
- FT_Pos d;
- FT_Fixed t;
- FT_Int shift;
-
-
- /* We need to solve `ax^2+2bx+c' here, without floating points! */
- /* The trick is to normalize to a different representation in order */
- /* to use our 16.16 fixed-point routines. */
- /* */
- /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
- /* These values must fit into a single 16.16 value. */
- /* */
- /* We normalize a, b, and c to `8.16' fixed-point values to ensure */
- /* that their product is held in a `16.16' value including the sign. */
- /* Necessarily, we need to shift `a', `b', and `c' so that the most */
- /* significant bit of their absolute values is at position 22. */
- /* */
- /* This also means that we are using 23 bits of precision to compute */
- /* the zeros, independently of the range of the original polynomial */
- /* coefficients. */
- /* */
- /* This algorithm should ensure reasonably accurate values for the */
- /* zeros. Note that they are only expressed with 16 bits when */
- /* computing the extrema (the zeros need to be in 0..1 exclusive */
- /* to be considered part of the arc). */
-
- shift = FT_MSB( FT_ABS( a ) | FT_ABS( b ) | FT_ABS( c ) );
-
- if ( shift > 22 )
- {
- shift -= 22;
-
- /* this loses some bits of precision, but we use 23 of them */
- /* for the computation anyway */
- a >>= shift;
- b >>= shift;
- c >>= shift;
- }
- else
- {
- shift = 22 - shift;
-
- a <<= shift;
- b <<= shift;
- c <<= shift;
- }
-
- /* handle a == 0 */
- if ( a == 0 )
- {
- if ( b != 0 )
- {
- t = - FT_DivFix( c, b ) / 2;
- test_cubic_extrema( y1, y2, y3, y4, t, min, max );
- }
- }
- else
- {
- /* solve the equation now */
- d = FT_MulFix( b, b ) - FT_MulFix( a, c );
- if ( d < 0 )
- return;
-
- if ( d == 0 )
- {
- /* there is a single split point at -b/a */
- t = - FT_DivFix( b, a );
- test_cubic_extrema( y1, y2, y3, y4, t, min, max );
- }
- else
- {
- /* there are two solutions; we need to filter them */
- d = FT_SqrtFixed( (FT_Int32)d );
- t = - FT_DivFix( b - d, a );
- test_cubic_extrema( y1, y2, y3, y4, t, min, max );
-
- t = - FT_DivFix( b + d, a );
- test_cubic_extrema( y1, y2, y3, y4, t, min, max );
- }
- }
- }
- }
-
-#endif
/*************************************************************************/