ref: 81e32986ca6dd4bc6bba6cccaa0738020ee10d3c
parent: c918b54f25340dcf1a6bf57f747f545ac1f30568
author: Anuj Verma <[email protected]>
date: Tue Aug 18 13:49:56 EDT 2020
[sdf] Add shortest distance finding functions. * src/sdf/ftsdf.c (get_min_distance_line, get_min_distance_conic, get_min_distance_cubic): New functions. Note that `get_min_distance_conic` comes with two implementations (using an analytical and an iterative method, to be controlled with the `USE_NEWTON_FOR_CONIC` macro).
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,15 @@
2020-08-18 Anuj Verma <[email protected]>
+ [sdf] Add shortest distance finding functions.
+
+ * src/sdf/ftsdf.c (get_min_distance_line, get_min_distance_conic,
+ get_min_distance_cubic): New functions. Note that
+ `get_min_distance_conic` comes with two implementations (using an
+ analytical and an iterative method, to be controlled with the
+ `USE_NEWTON_FOR_CONIC` macro).
+
+2020-08-18 Anuj Verma <[email protected]>
+
[sdf] Add function to resolve corner distances.
* src/sdf/ftsdf.c (resolve_corner): New function.
--- a/src/sdf/ftsdf.c
+++ b/src/sdf/ftsdf.c
@@ -1631,7 +1631,7 @@
*
* The orthogonality is simply the sinus of the two vectors (i.e.,
* x - o) and the corresponding direction. We efficiently pre-compute
- * the orthogonality with the corresponding `get_min_distance_`
+ * the orthogonality with the corresponding `get_min_distance_*`
* functions.
*
* @Input:
@@ -1659,5 +1659,1085 @@
{
return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2;
}
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_line
+ *
+ * @Description:
+ * Find the shortest distance from the `line` segment to a given `point`
+ * and assign it to `out`. Use it for line segments only.
+ *
+ * @Input:
+ * line ::
+ * The line segment to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `line`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The `line' parameter must have an edge type of `SDF_EDGE_LINE`.
+ *
+ */
+ static FT_Error
+ get_min_distance_line( SDF_Edge* line,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * In order to calculate the shortest distance from a point to
+ * a line segment, we do the following. Let's assume that
+ *
+ * ```
+ * a = start point of the line segment
+ * b = end point of the line segment
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) Write the parametric equation of the line.
+ *
+ * ```
+ * point_on_line = a + (b - a) * t (t is the factor)
+ * ```
+ *
+ * (2) Find the projection of point `p` on the line. The projection
+ * will be perpendicular to the line, which allows us to get the
+ * solution by making the dot product zero.
+ *
+ * ```
+ * (point_on_line - a) . (p - point_on_line) = 0
+ *
+ * (point_on_line)
+ * (a) x-------o----------------x (b)
+ * |_|
+ * |
+ * |
+ * (p)
+ * ```
+ *
+ * (3) Simplification of the above equation yields the factor of
+ * `point_on_line`:
+ *
+ * ```
+ * t = ((p - a) . (b - a)) / |b - a|^2
+ * ```
+ *
+ * (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line`
+ * can be outside of the line segment:
+ *
+ * ```
+ * (point_on_line)
+ * (a) x------------------------x (b) -----o---
+ * |_|
+ * |
+ * |
+ * (p)
+ * ```
+ *
+ * (5) Finally, the distance we are interested in is
+ *
+ * ```
+ * |point_on_line - p|
+ * ```
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_Vector a; /* start position */
+ FT_Vector b; /* end position */
+ FT_Vector p; /* current point */
+
+ FT_26D6_Vec line_segment; /* `b` - `a` */
+ FT_26D6_Vec p_sub_a; /* `p` - `a` */
+
+ FT_26D6 sq_line_length; /* squared length of `line_segment` */
+ FT_16D16 factor; /* factor of the nearest point */
+ FT_26D6 cross; /* used to determine sign */
+
+ FT_16D16_Vec nearest_point; /* `point_on_line` */
+ FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */
+
+
+ if ( !line || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( line->edge_type != SDF_EDGE_LINE )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ a = line->start_pos;
+ b = line->end_pos;
+ p = point;
+
+ line_segment.x = b.x - a.x;
+ line_segment.y = b.y - a.y;
+
+ p_sub_a.x = p.x - a.x;
+ p_sub_a.y = p.y - a.y;
+
+ sq_line_length = ( line_segment.x * line_segment.x ) / 64 +
+ ( line_segment.y * line_segment.y ) / 64;
+
+ /* currently factor is 26.6 */
+ factor = ( p_sub_a.x * line_segment.x ) / 64 +
+ ( p_sub_a.y * line_segment.y ) / 64;
+
+ /* now factor is 16.16 */
+ factor = FT_DivFix( factor, sq_line_length );
+
+ /* clamp the factor between 0.0 and 1.0 in fixed point */
+ if ( factor > FT_INT_16D16( 1 ) )
+ factor = FT_INT_16D16( 1 );
+ if ( factor < 0 )
+ factor = 0;
+
+ nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ),
+ factor );
+ nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ),
+ factor );
+
+ nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x;
+ nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y;
+
+ nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x );
+ nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y );
+
+ cross = FT_MulFix( nearest_vector.x, line_segment.y ) -
+ FT_MulFix( nearest_vector.y, line_segment.x );
+
+ /* assign the output */
+ out->sign = cross < 0 ? 1 : -1;
+ out->distance = VECTOR_LENGTH_16D16( nearest_vector );
+
+ /* Instead of finding `cross` for checking corner we */
+ /* directly set it here. This is more efficient */
+ /* because if the distance is perpendicular we can */
+ /* directly set it to 1. */
+ if ( factor != 0 && factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 );
+ else
+ {
+ /* [OPTIMIZATION]: Pre-compute this direction. */
+ /* If not perpendicular then compute `cross`. */
+ FT_Vector_NormLen( &line_segment );
+ FT_Vector_NormLen( &nearest_vector );
+
+ out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) -
+ FT_MulFix( line_segment.y, nearest_vector.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_conic
+ *
+ * @Description:
+ * Find the shortest distance from the `conic` Bezier curve to a given
+ * `point` and assign it to `out`. Use it for conic/quadratic curves
+ * only.
+ *
+ * @Input:
+ * conic ::
+ * The conic Bezier curve to which the shortest distance is to be
+ * computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `conic`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`.
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /*
+ * The function uses an analytical method to find the shortest distance
+ * which is faster than the Newton-Raphson method, but has underflows at
+ * the moment. Use Newton's method if you can see artifacts in the SDF.
+ */
+ static FT_Error
+ get_min_distance_conic( SDF_Edge* conic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * The procedure to find the shortest distance from a point to a
+ * quadratic Bezier curve is similar to the line segment algorithm. The
+ * shortest distance is perpendicular to the Bezier curve; the only
+ * difference from line is that there can be more than one
+ * perpendicular, and we also have to check the endpoints, because the
+ * perpendicular may not be the shortest.
+ *
+ * Let's assume that
+ * ```
+ * p0 = first endpoint
+ * p1 = control point
+ * p2 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a quadratic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
+ * ```
+ *
+ * with `t` a factor in the range [0.0f, 1.0f]. This equation can
+ * be rewritten as
+ *
+ * ```
+ * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = p0 - 2p1 + p2
+ * B = p1 - p0
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^2 * A + 2t * B + p0
+ * ```
+ *
+ * (2) The derivative of the last equation above is
+ *
+ * ```
+ * B'(t) = 2 *(tA + B)
+ * ```
+ *
+ * (3) To find the shortest distance from `p` to `B(t)` we find the
+ * point on the curve at which the shortest distance vector (i.e.,
+ * `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees.
+ * In other words, we make the dot product zero.
+ *
+ * ```
+ * (B(t) - p) . (B'(t)) = 0
+ * (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0
+ * ```
+ *
+ * After simplifying we get a cubic equation
+ *
+ * ```
+ * at^3 + bt^2 + ct + d = 0
+ * ```
+ *
+ * with
+ *
+ * ```
+ * a = A.A
+ * b = 3A.B
+ * c = 2B.B + A.p0 - A.p
+ * d = p0.B - p.B
+ * ```
+ *
+ * (4) Now the roots of the equation can be computed using 'Cardano's
+ * Cubic formula'; we clamp the roots in the range [0.0f, 1.0f].
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB; /* A, B in the above comment */
+ FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */
+ FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_26D6 a, b, c, d; /* cubic coefficients */
+
+ FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */
+ FT_16D16 min_factor; /* factor at `nearest_point` */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
+
+ FT_UShort num_roots; /* number of real roots of cubic */
+ FT_UShort i;
+
+
+ if ( !conic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( conic->edge_type != SDF_EDGE_CONIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = conic->start_pos;
+ p1 = conic->control_a;
+ p2 = conic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = p0.x - 2 * p1.x + p2.x;
+ aA.y = p0.y - 2 * p1.y + p2.y;
+
+ bB.x = p1.x - p0.x;
+ bB.y = p1.y - p0.y;
+
+ /* compute cubic coefficients */
+ a = VEC_26D6_DOT( aA, aA );
+
+ b = 3 * VEC_26D6_DOT( aA, bB );
+
+ c = 2 * VEC_26D6_DOT( bB, bB ) +
+ VEC_26D6_DOT( aA, p0 ) -
+ VEC_26D6_DOT( aA, p );
+
+ d = VEC_26D6_DOT( p0, bB ) -
+ VEC_26D6_DOT( p, bB );
+
+ /* find the roots */
+ num_roots = solve_cubic_equation( a, b, c, d, roots );
+
+ if ( num_roots == 0 )
+ {
+ roots[0] = 0;
+ roots[1] = FT_INT_16D16( 1 );
+ num_roots = 2;
+ }
+
+ /* [OPTIMIZATION]: Check the roots, clamp them and discard */
+ /* duplicate roots. */
+
+ /* convert these values to 16.16 for further computation */
+ aA.x = FT_26D6_16D16( aA.x );
+ aA.y = FT_26D6_16D16( aA.y );
+
+ bB.x = FT_26D6_16D16( bB.x );
+ bB.y = FT_26D6_16D16( bB.y );
+
+ p0.x = FT_26D6_16D16( p0.x );
+ p0.y = FT_26D6_16D16( p0.y );
+
+ p.x = FT_26D6_16D16( p.x );
+ p.y = FT_26D6_16D16( p.y );
+
+ for ( i = 0; i < num_roots; i++ )
+ {
+ FT_16D16 t = roots[i];
+ FT_16D16 t2 = 0;
+ FT_16D16 dist = 0;
+
+ FT_16D16_Vec curve_point;
+ FT_16D16_Vec dist_vector;
+
+ /*
+ * Ideally we should discard the roots which are outside the range
+ * [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad
+ * Esfahbod proved the following lemma.
+ *
+ * Lemma:
+ *
+ * (1) If the closest point on the curve [0, 1] is to the endpoint at
+ * `t` = 1 and the cubic has no real roots at `t` = 1 then the
+ * cubic must have a real root at some `t` > 1.
+ *
+ * (2) Similarly, if the closest point on the curve [0, 1] is to the
+ * endpoint at `t` = 0 and the cubic has no real roots at `t` = 0
+ * then the cubic must have a real root at some `t` < 0.
+ *
+ * Now because of this lemma we only need to clamp the roots and that
+ * will take care of the endpoints.
+ *
+ * For more details see
+ *
+ * https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html
+ */
+
+ if ( t < 0 )
+ t = 0;
+ if ( t > FT_INT_16D16( 1 ) )
+ t = FT_INT_16D16( 1 );
+
+ t2 = FT_MulFix( t, t );
+
+ /* B(t) = t^2 * A + 2t * B + p0 - p */
+ curve_point.x = FT_MulFix( aA.x, t2 ) +
+ 2 * FT_MulFix( bB.x, t ) + p0.x;
+ curve_point.y = FT_MulFix( aA.y, t2 ) +
+ 2 * FT_MulFix( bB.y, t ) + p0.y;
+
+ /* `curve_point` - `p` */
+ dist_vector.x = curve_point.x - p.x;
+ dist_vector.y = curve_point.y - p.y;
+
+ dist = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( dist < min )
+ {
+ min = dist;
+ nearest_point = curve_point;
+ min_factor = t;
+ }
+ }
+
+ /* B'(t) = 2 * (tA + B) */
+ direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x;
+ direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - p.x, direction.y ) -
+ FT_MulFix( nearest_point.y - p.y, direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+#else /* USE_NEWTON_FOR_CONIC */
+
+ /*
+ * The function uses Newton's approximation to find the shortest distance,
+ * which is a bit slower than the analytical method but doesn't cause
+ * underflow.
+ */
+ static FT_Error
+ get_min_distance_conic( SDF_Edge* conic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * This method uses Newton-Raphson's approximation to find the shortest
+ * distance from a point to a conic curve. It does not involve solving
+ * any cubic equation, that is why there is no risk of underflow.
+ *
+ * Let's assume that
+ *
+ * ```
+ * p0 = first endpoint
+ * p1 = control point
+ * p3 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a quadratic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
+ * ```
+ *
+ * with `t` the factor in the range [0.0f, 1.0f]. The above
+ * equation can be rewritten as
+ *
+ * ```
+ * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = p0 - 2p1 + p2
+ * B = 2 * (p1 - p0)
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^2 * A + t * B + p0
+ * ```
+ *
+ * (2) The derivative of the above equation is
+ *
+ * ```
+ * B'(t) = 2t * A + B
+ * ```
+ *
+ * (3) The second derivative of the above equation is
+ *
+ * ```
+ * B''(t) = 2A
+ * ```
+ *
+ * (4) The equation `P(t)` of the distance from point `p` to the curve
+ * can be written as
+ *
+ * ```
+ * P(t) = t^2 * A + t^2 * B + p0 - p
+ * ```
+ *
+ * With
+ *
+ * ```
+ * C = p0 - p
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * P(t) = t^2 * A + t * B + C
+ * ```
+ *
+ * (5) Finally, the equation of the angle between `B(t)` and `P(t)` can
+ * be written as
+ *
+ * ```
+ * Q(t) = P(t) . B'(t)
+ * ```
+ *
+ * (6) Our task is to find a value of `t` such that the above equation
+ * `Q(t)` becomes zero, this is, the point-to-curve vector makes
+ * 90~degrees with the curve. We solve this with the Newton-Raphson
+ * method.
+ *
+ * (7) We first assume an arbitary value of factor `t`, which we then
+ * improve.
+ *
+ * ```
+ * t := Q(t) / Q'(t)
+ * ```
+ *
+ * Putting the value of `Q(t)` from the above equation gives
+ *
+ * ```
+ * t := P(t) . B'(t) / derivative(P(t) . B'(t))
+ * t := P(t) . B'(t) /
+ * (P'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * Note that `P'(t)` is the same as `B'(t)` because the constant is
+ * gone due to the derivative.
+ *
+ * (8) Finally we get the equation to improve the factor as
+ *
+ * ```
+ * t := P(t) . B'(t) /
+ * (B'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
+ FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */
+ FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_16D16 min_factor = 0; /* factor at `nearest_point' */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
+
+ FT_UShort iterations;
+ FT_UShort steps;
+
+
+ if ( !conic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( conic->edge_type != SDF_EDGE_CONIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = conic->start_pos;
+ p1 = conic->control_a;
+ p2 = conic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = p0.x - 2 * p1.x + p2.x;
+ aA.y = p0.y - 2 * p1.y + p2.y;
+
+ bB.x = 2 * ( p1.x - p0.x );
+ bB.y = 2 * ( p1.y - p0.y );
+
+ cC.x = p0.x;
+ cC.y = p0.y;
+
+ /* do Newton's iterations */
+ for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
+ {
+ FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
+ FT_16D16 factor2;
+ FT_16D16 length;
+
+ FT_16D16_Vec curve_point; /* point on the curve */
+ FT_16D16_Vec dist_vector; /* `curve_point` - `p` */
+
+ FT_26D6_Vec d1; /* first derivative */
+ FT_26D6_Vec d2; /* second derivative */
+
+ FT_16D16 temp1;
+ FT_16D16 temp2;
+
+
+ for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
+ {
+ factor2 = FT_MulFix( factor, factor );
+
+ /* B(t) = t^2 * A + t * B + p0 */
+ curve_point.x = FT_MulFix( aA.x, factor2 ) +
+ FT_MulFix( bB.x, factor ) + cC.x;
+ curve_point.y = FT_MulFix( aA.y, factor2 ) +
+ FT_MulFix( bB.y, factor ) + cC.y;
+
+ /* convert to 16.16 */
+ curve_point.x = FT_26D6_16D16( curve_point.x );
+ curve_point.y = FT_26D6_16D16( curve_point.y );
+
+ /* P(t) in the comment */
+ dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
+ dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
+
+ length = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( length < min )
+ {
+ min = length;
+ min_factor = factor;
+ nearest_point = curve_point;
+ }
+
+ /* This is Newton's approximation. */
+ /* */
+ /* t := P(t) . B'(t) / */
+ /* (B'(t) . B'(t) + P(t) . B''(t)) */
+
+ /* B'(t) = 2tA + B */
+ d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
+ d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
+
+ /* B''(t) = 2A */
+ d2.x = 2 * aA.x;
+ d2.y = 2 * aA.y;
+
+ dist_vector.x /= 1024;
+ dist_vector.y /= 1024;
+
+ /* temp1 = P(t) . B'(t) */
+ temp1 = VEC_26D6_DOT( dist_vector, d1 );
+
+ /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
+ temp2 = VEC_26D6_DOT( d1, d1 ) +
+ VEC_26D6_DOT( dist_vector, d2 );
+
+ factor -= FT_DivFix( temp1, temp2 );
+
+ if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
+ break;
+ }
+ }
+
+ /* B'(t) = 2t * A + B */
+ direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
+ direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
+ direction.y ) -
+ FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
+ direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+#endif /* USE_NEWTON_FOR_CONIC */
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_cubic
+ *
+ * @Description:
+ * Find the shortest distance from the `cubic` Bezier curve to a given
+ * `point` and assigns it to `out`. Use it for cubic curves only.
+ *
+ * @Input:
+ * cubic ::
+ * The cubic Bezier curve to which the shortest distance is to be
+ * computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `cubic`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function uses Newton's approximation to find the shortest
+ * distance. Another way would be to divide the cubic into conic or
+ * subdivide the curve into lines, but that is not implemented.
+ *
+ * The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`.
+ *
+ */
+ static FT_Error
+ get_min_distance_cubic( SDF_Edge* cubic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * The procedure to find the shortest distance from a point to a cubic
+ * Bezier curve is similar to quadratic curve algorithm. The only
+ * difference is that while calculating factor `t`, instead of a cubic
+ * polynomial equation we have to find the roots of a 5th degree
+ * polynomial equation. Solving this would require a significant amount
+ * of time, and still the results may not be accurate. We are thus
+ * going to directly approximate the value of `t` using the Newton-Raphson
+ * method.
+ *
+ * Let's assume that
+ *
+ * ```
+ * p0 = first endpoint
+ * p1 = first control point
+ * p2 = second control point
+ * p3 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a cubic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 +
+ * 3(1 - t)t^2 * p2 + t^3 * p3
+ * ```
+ *
+ * The equation can be expanded and written as
+ *
+ * ```
+ * B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) +
+ * 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = -p0 + 3p1 - 3p2 + p3
+ * B = 3(p0 - 2p1 + p2)
+ * C = 3(-p0 + p1)
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^3 * A + t^2 * B + t * C + p0
+ * ```
+ *
+ * (2) The derivative of the above equation is
+ *
+ * ```
+ * B'(t) = 3t^2 * A + 2t * B + C
+ * ```
+ *
+ * (3) The second derivative of the above equation is
+ *
+ * ```
+ * B''(t) = 6t * A + 2B
+ * ```
+ *
+ * (4) The equation `P(t)` of the distance from point `p` to the curve
+ * can be written as
+ *
+ * ```
+ * P(t) = t^3 * A + t^2 * B + t * C + p0 - p
+ * ```
+ *
+ * With
+ *
+ * ```
+ * D = p0 - p
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * P(t) = t^3 * A + t^2 * B + t * C + D
+ * ```
+ *
+ * (5) Finally the equation of the angle between `B(t)` and `P(t)` can
+ * be written as
+ *
+ * ```
+ * Q(t) = P(t) . B'(t)
+ * ```
+ *
+ * (6) Our task is to find a value of `t` such that the above equation
+ * `Q(t)` becomes zero, this is, the point-to-curve vector makes
+ * 90~degree with curve. We solve this with the Newton-Raphson
+ * method.
+ *
+ * (7) We first assume an arbitary value of factor `t`, which we then
+ * improve.
+ *
+ * ```
+ * t := Q(t) / Q'(t)
+ * ```
+ *
+ * Putting the value of `Q(t)` from the above equation gives
+ *
+ * ```
+ * t := P(t) . B'(t) / derivative(P(t) . B'(t))
+ * t := P(t) . B'(t) /
+ * (P'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * Note that `P'(t)` is the same as `B'(t)` because the constant is
+ * gone due to the derivative.
+ *
+ * (8) Finally we get the equation to improve the factor as
+ *
+ * ```
+ * t := P(t) . B'(t) /
+ * (B'(t) . B'( t ) + P(t) . B''(t))
+ * ```
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */
+ FT_16D16_Vec nearest_point; /* point on curve nearest to `point` */
+ FT_16D16_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_16D16 min_factor = 0; /* factor at shortest distance */
+ FT_16D16 min_factor_sq = 0; /* factor at shortest distance */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest distance */
+
+ FT_UShort iterations;
+ FT_UShort steps;
+
+
+ if ( !cubic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( cubic->edge_type != SDF_EDGE_CUBIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = cubic->start_pos;
+ p1 = cubic->control_a;
+ p2 = cubic->control_b;
+ p3 = cubic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
+ aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
+
+ bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
+ bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
+
+ cC.x = 3 * ( p1.x - p0.x );
+ cC.y = 3 * ( p1.y - p0.y );
+
+ dD.x = p0.x;
+ dD.y = p0.y;
+
+ for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
+ {
+ FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
+
+ FT_16D16 factor2; /* factor^2 */
+ FT_16D16 factor3; /* factor^3 */
+ FT_16D16 length;
+
+ FT_16D16_Vec curve_point; /* point on the curve */
+ FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
+
+ FT_26D6_Vec d1; /* first derivative */
+ FT_26D6_Vec d2; /* second derivative */
+
+ FT_16D16 temp1;
+ FT_16D16 temp2;
+
+
+ for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
+ {
+ factor2 = FT_MulFix( factor, factor );
+ factor3 = FT_MulFix( factor2, factor );
+
+ /* B(t) = t^3 * A + t^2 * B + t * C + D */
+ curve_point.x = FT_MulFix( aA.x, factor3 ) +
+ FT_MulFix( bB.x, factor2 ) +
+ FT_MulFix( cC.x, factor ) + dD.x;
+ curve_point.y = FT_MulFix( aA.y, factor3 ) +
+ FT_MulFix( bB.y, factor2 ) +
+ FT_MulFix( cC.y, factor ) + dD.y;
+
+ /* convert to 16.16 */
+ curve_point.x = FT_26D6_16D16( curve_point.x );
+ curve_point.y = FT_26D6_16D16( curve_point.y );
+
+ /* P(t) in the comment */
+ dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
+ dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
+
+ length = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( length < min )
+ {
+ min = length;
+ min_factor = factor;
+ min_factor_sq = factor2;
+ nearest_point = curve_point;
+ }
+
+ /* This the Newton's approximation. */
+ /* */
+ /* t := P(t) . B'(t) / */
+ /* (B'(t) . B'(t) + P(t) . B''(t)) */
+
+ /* B'(t) = 3t^2 * A + 2t * B + C */
+ d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
+ FT_MulFix( bB.x, 2 * factor ) + cC.x;
+ d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
+ FT_MulFix( bB.y, 2 * factor ) + cC.y;
+
+ /* B''(t) = 6t * A + 2B */
+ d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
+ d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
+
+ dist_vector.x /= 1024;
+ dist_vector.y /= 1024;
+
+ /* temp1 = P(t) . B'(t) */
+ temp1 = VEC_26D6_DOT( dist_vector, d1 );
+
+ /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
+ temp2 = VEC_26D6_DOT( d1, d1 ) +
+ VEC_26D6_DOT( dist_vector, d2 );
+
+ factor -= FT_DivFix( temp1, temp2 );
+
+ if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
+ break;
+ }
+ }
+
+ /* B'(t) = 3t^2 * A + 2t * B + C */
+ direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
+ FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
+ direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
+ FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
+ direction.y ) -
+ FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
+ direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+ Exit:
+ return error;
+ }
+
/* END */