ref: 5ae1bad3f6f1c842a6f87d8c6e1e5c0237eb236b
parent: 314bf4a1f436586b38df09f4b87cdfbe6e7add37
author: David Turner <[email protected]>
date: Tue Jun 27 19:18:39 EDT 2000
added new renderer module
--- /dev/null
+++ b/src/raster1/ftraster.c
@@ -1,0 +1,3270 @@
+/***************************************************************************/
+/* */
+/* ftraster.c */
+/* */
+/* The FreeType glyph rasterizer (body). */
+/* */
+/* Copyright 1996-2000 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used, */
+/* modified, and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* This is a rewrite of the FreeType 1.x scan-line converter */
+ /* */
+ /*************************************************************************/
+
+
+#include "ftraster.h"
+#include <freetype/internal/ftcalc.h> /* for FT_MulDiv() only */
+
+
+ /*************************************************************************/
+ /* */
+ /* A simple technical note on how the raster works: */
+ /* */
+ /* Converting an outline into a bitmap is achieved in several steps: */
+ /* */
+ /* 1 - Decomposing the outline into successive `profiles'. Each */
+ /* profile is simply an array of scanline intersections on a given */
+ /* dimension. A profile's main attributes are */
+ /* */
+ /* o its scanline position boundaries, i.e. `Ymin' and `Ymax'. */
+ /* */
+ /* o an array of intersection coordinates for each scanline */
+ /* between `Ymin' and `Ymax'. */
+ /* */
+ /* o a direction, indicating whether it was built going `up' or */
+ /* `down', as this is very important for filling rules. */
+ /* */
+ /* 2 - Sweeping the target map's scanlines in order to compute segment */
+ /* `spans' which are then filled. Additionally, this pass */
+ /* performs drop-out control. */
+ /* */
+ /* The outline data is parsed during step 1 only. The profiles are */
+ /* built from the bottom of the render pool, used as a stack. The */
+ /* following graphics shows the profile list under construction: */
+ /* */
+ /* ____________________________________________________________ _ _ */
+ /* | | | | | */
+ /* | profile | coordinates for | profile | coordinates for |--> */
+ /* | 1 | profile 1 | 2 | profile 2 |--> */
+ /* |_________|___________________|_________|_________________|__ _ _ */
+ /* */
+ /* ^ ^ */
+ /* | | */
+ /* start of render pool top */
+ /* */
+ /* The top of the profile stack is kept in the `top' variable. */
+ /* */
+ /* As you can see, a profile record is pushed on top of the render */
+ /* pool, which is then followed by its coordinates/intersections. If */
+ /* a change of direction is detected in the outline, a new profile is */
+ /* generated until the end of the outline. */
+ /* */
+ /* Note that when all profiles have been generated, the function */
+ /* Finalize_Profile_Table() is used to record, for each profile, its */
+ /* bottom-most scanline as well as the scanline above its upmost */
+ /* boundary. These positions are called `y-turns' because they (sort */
+ /* of) correspond to local extrema. They are stored in a sorted list */
+ /* built from the top of the render pool as a downwards stack: */
+ /* */
+ /* _ _ _______________________________________ */
+ /* | | */
+ /* <--| sorted list of | */
+ /* <--| extrema scanlines | */
+ /* _ _ __________________|____________________| */
+ /* */
+ /* ^ ^ */
+ /* | | */
+ /* maxBuff sizeBuff = end of pool */
+ /* */
+ /* This list is later used during the sweep phase in order to */
+ /* optimize performance (see technical note on the sweep below). */
+ /* */
+ /* Of course, the raster detects whether the two stacks collide and */
+ /* handles the situation propertly. */
+ /* */
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** CONFIGURATION MACROS **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /* define DEBUG_RASTER if you want to compile a debugging version */
+#define xxxDEBUG_RASTER
+
+ /* The default render pool size in bytes */
+#define RASTER_RENDER_POOL 8192
+
+ /* undefine FT_RASTER_OPTION_ANTI_ALIASING if you do not want to support */
+ /* 5-levels anti-aliasing */
+#ifdef xxxFT_CONFIG_OPTION_5_GRAY_LEVELS
+#define FT_RASTER_OPTION_ANTI_ALIASING
+#endif
+
+ /* The size of the two-lines intermediate bitmap used */
+ /* for anti-aliasing, in bytes. */
+#define RASTER_GRAY_LINES 2048
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** OTHER MACROS (do not change) **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
+ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
+ /* messages during execution. */
+ /* */
+#undef FT_COMPONENT
+#define FT_COMPONENT trace_raster
+
+
+#ifdef _STANDALONE_
+
+
+ /* This macro is used to indicate that a function parameter is unused. */
+ /* Its purpose is simply to reduce compiler warnings. Note also that */
+ /* simply defining it as `(void)x' doesn't avoid warnings with certain */
+ /* ANSI compilers (e.g. LCC). */
+#define UNUSED( x ) (x) = (x)
+
+ /* Disable the tracing mechanism for simplicity -- developers can */
+ /* activate it easily by redefining these two macros. */
+#ifndef FT_ERROR
+#define FT_ERROR( x ) do ; while ( 0 ) /* nothing */
+#endif
+
+#ifndef FT_TRACE
+#define FT_TRACE( x ) do ; while ( 0 ) /* nothing */
+#endif
+
+
+#else /* _STANDALONE_ */
+
+
+#include <freetype/internal/ftobjs.h>
+#include <freetype/internal/ftdebug.h> /* for FT_TRACE() and FT_ERROR() */
+
+
+#endif /* _STANDALONE_ */
+
+
+#define Raster_Err_None 0
+#define Raster_Err_Not_Ini -1
+#define Raster_Err_Overflow -2
+#define Raster_Err_Neg_Height -3
+#define Raster_Err_Invalid -4
+#define Raster_Err_Gray_Unsupported -5
+#define Raster_Err_Unsupported -6
+
+ /* FMulDiv means `Fast MulDiv', it is used in case where `b' is */
+ /* typically a small value and the result of a*b is known to fit into */
+ /* 32 bits. */
+#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
+
+ /* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */
+ /* for clipping computations. It simply uses the FT_MulDiv() function */
+ /* defined in `ftcalc.h'. */
+#define SMulDiv FT_MulDiv
+
+ /* The rasterizer is a very general purpose component; please leave */
+ /* the following redefinitions there (you never know your target */
+ /* environment). */
+
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+#ifndef FALSE
+#define FALSE 0
+#endif
+
+#ifndef NULL
+#define NULL (void*)0
+#endif
+
+#ifndef SUCCESS
+#define SUCCESS 0
+#endif
+
+#ifndef FAILURE
+#define FAILURE 1
+#endif
+
+
+#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
+ /* Setting this constant to more than 32 is a */
+ /* pure waste of space. */
+
+#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** SIMPLE TYPE DECLARATIONS **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ typedef int Int;
+ typedef unsigned int UInt;
+ typedef short Short;
+ typedef unsigned short UShort, *PUShort;
+ typedef long Long, *PLong;
+ typedef unsigned long ULong;
+
+ typedef unsigned char Byte, *PByte;
+ typedef char Bool;
+
+ typedef struct TPoint_
+ {
+ Long x;
+ Long y;
+
+ } TPoint;
+
+
+ typedef enum TFlow_
+ {
+ Flow_None = 0,
+ Flow_Up = 1,
+ Flow_Down = -1
+
+ } TFlow;
+
+
+ /* States of each line, arc, and profile */
+ typedef enum TStates_
+ {
+ Unknown,
+ Ascending,
+ Descending,
+ Flat
+
+ } TStates;
+
+
+ typedef struct TProfile_ TProfile;
+ typedef TProfile* PProfile;
+
+ struct TProfile_
+ {
+ FT_F26Dot6 X; /* current coordinate during sweep */
+ PProfile link; /* link to next profile - various purpose */
+ PLong offset; /* start of profile's data in render pool */
+ Int flow; /* Profile orientation: Asc/Descending */
+ Long height; /* profile's height in scanlines */
+ Long start; /* profile's starting scanline */
+
+ UShort countL; /* number of lines to step before this */
+ /* profile becomes drawable */
+
+ PProfile next; /* next profile in same contour, used */
+ /* during drop-out control */
+ };
+
+ typedef PProfile TProfileList;
+ typedef PProfile* PProfileList;
+
+
+ /* Simple record used to implement a stack of bands, required */
+ /* by the sub-banding mechanism */
+ typedef struct TBand_
+ {
+ Short y_min; /* band's minimum */
+ Short y_max; /* band's maximum */
+
+ } TBand;
+
+
+#define AlignProfileSize \
+ ( ( sizeof ( TProfile ) + sizeof ( long ) - 1 ) / sizeof ( long ) )
+
+
+#ifdef TT_STATIC_RASTER
+
+#define RAS_ARGS /* void */
+#define RAS_ARG /* void */
+
+#define RAS_VARS /* void */
+#define RAS_VAR /* void */
+
+#define UNUSED_RASTER do ; while ( 0 )
+
+#else /* TT_STATIC_RASTER */
+
+#define RAS_ARGS TRaster_Instance* raster,
+#define RAS_ARG TRaster_Instance* raster
+
+#define RAS_VARS raster,
+#define RAS_VAR raster
+
+#define UNUSED_RASTER UNUSED( raster )
+
+#endif /* TT_STATIC_RASTER */
+
+
+ typedef struct TRaster_Instance_ TRaster_Instance;
+
+
+ /* prototypes used for sweep function dispatch */
+ typedef void Function_Sweep_Init( RAS_ARGS Short* min,
+ Short* max );
+
+ typedef void Function_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right );
+
+ typedef void Function_Sweep_Step( RAS_ARG );
+
+
+ /* NOTE: These operations are only valid on 2's complement processors */
+
+#define FLOOR( x ) ( (x) & -ras.precision )
+#define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision )
+#define TRUNC( x ) ( (signed long)(x) >> ras.precision_bits )
+#define FRAC( x ) ( (x) & ( ras.precision - 1 ) )
+#define SCALED( x ) ( ( (x) << ras.scale_shift ) - ras.precision_half )
+
+ /* Note that I have moved the location of some fields in the */
+ /* structure to ensure that the most used variables are used */
+ /* at the top. Thus, their offset can be coded with less */
+ /* opcodes, and it results in a smaller executable. */
+
+ struct TRaster_Instance_
+ {
+ Int precision_bits; /* precision related variables */
+ Int precision;
+ Int precision_half;
+ Long precision_mask;
+ Int precision_shift;
+ Int precision_step;
+ Int precision_jitter;
+
+ Int scale_shift; /* == precision_shift for bitmaps */
+ /* == precision_shift+1 for pixmaps */
+
+ PLong buff; /* The profiles buffer */
+ PLong sizeBuff; /* Render pool size */
+ PLong maxBuff; /* Profiles buffer size */
+ PLong top; /* Current cursor in buffer */
+
+ FT_Error error;
+
+ Int numTurns; /* number of Y-turns in outline */
+
+ TPoint* arc; /* current Bezier arc pointer */
+
+ UShort bWidth; /* target bitmap width */
+ PByte bTarget; /* target bitmap buffer */
+ PByte gTarget; /* target pixmap buffer */
+
+ Long lastX, lastY, minY, maxY;
+
+ UShort num_Profs; /* current number of profiles */
+
+ Bool fresh; /* signals a fresh new profile which */
+ /* 'start' field must be completed */
+ Bool joint; /* signals that the last arc ended */
+ /* exactly on a scanline. Allows */
+ /* removal of doublets */
+ PProfile cProfile; /* current profile */
+ PProfile fProfile; /* head of linked list of profiles */
+ PProfile gProfile; /* contour's first profile in case */
+ /* of impact */
+ TStates state; /* rendering state */
+
+ FT_Bitmap target; /* description of target bit/pixmap */
+ FT_Outline outline;
+
+ Long traceOfs; /* current offset in target bitmap */
+ Long traceG; /* current offset in target pixmap */
+
+ Short traceIncr; /* sweep's increment in target bitmap */
+
+ Short gray_min_x; /* current min x during gray rendering */
+ Short gray_max_x; /* current max x during gray rendering */
+
+ /* dispatch variables */
+
+ Function_Sweep_Init* Proc_Sweep_Init;
+ Function_Sweep_Span* Proc_Sweep_Span;
+ Function_Sweep_Span* Proc_Sweep_Drop;
+ Function_Sweep_Step* Proc_Sweep_Step;
+
+ Byte dropOutControl; /* current drop_out control method */
+
+ Bool second_pass; /* indicates wether a horizontal pass */
+ /* should be performed to control */
+ /* drop-out accurately when calling */
+ /* Render_Glyph. Note that there is */
+ /* no horizontal pass during gray */
+ /* rendering. */
+ TPoint arcs[2 * MaxBezier + 1]; /* The Bezier stack */
+
+ TBand band_stack[16]; /* band stack used for sub-banding */
+ Int band_top; /* band stack top */
+
+ Int count_table[256]; /* Look-up table used to quickly count */
+ /* set bits in a gray 2x2 cell */
+
+ void* memory;
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+ Byte grays[5]; /* Palette of gray levels used for */
+ /* render. */
+
+ Byte gray_lines[RASTER_GRAY_LINES];
+ /* Intermediate table used to render the */
+ /* graylevels pixmaps. */
+ /* gray_lines is a buffer holding two */
+ /* monochrome scanlines */
+ Short gray_width; /* width in bytes of one monochrome */
+ /* intermediate scanline of gray_lines. */
+ /* Each gray pixel takes 2 bits long there */
+
+ /* The gray_lines must hold 2 lines, thus with size */
+ /* in bytes of at least `gray_width*2'. */
+
+#endif /* FT_RASTER_ANTI_ALIASING */
+
+#if 0
+ PByte flags; /* current flags table */
+ PUShort outs; /* current outlines table */
+ FT_Vector* coords;
+
+ UShort nPoints; /* number of points in current glyph */
+ Short nContours; /* number of contours in current glyph */
+#endif
+
+ };
+
+
+#ifdef FT_CONFIG_OPTION_STATIC_RASTER
+
+ static TRaster_Instance cur_ras;
+#define ras cur_ras
+
+#else
+
+#define ras (*raster)
+
+#endif /* FT_CONFIG_OPTION_STATIC_RASTER */
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** PROFILES COMPUTATION **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Set_High_Precision */
+ /* */
+ /* <Description> */
+ /* Sets precision variables according to param flag. */
+ /* */
+ /* <Input> */
+ /* High :: Set to True for high precision (typically for ppem < 18), */
+ /* false otherwise. */
+ /* */
+ static
+ void Set_High_Precision( RAS_ARGS Int High )
+ {
+ if ( High )
+ {
+ ras.precision_bits = 10;
+ ras.precision_step = 128;
+ ras.precision_jitter = 24;
+ }
+ else
+ {
+ ras.precision_bits = 6;
+ ras.precision_step = 32;
+ ras.precision_jitter = 2;
+ }
+
+ FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
+
+ ras.precision = 1L << ras.precision_bits;
+ ras.precision_half = ras.precision / 2;
+ ras.precision_shift = ras.precision_bits - Pixel_Bits;
+ ras.precision_mask = -ras.precision;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* New_Profile */
+ /* */
+ /* <Description> */
+ /* Creates a new profile in the render pool. */
+ /* */
+ /* <Input> */
+ /* aState :: The state/orientation of the new profile. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow or of incoherent */
+ /* profile. */
+ /* */
+ static
+ Bool New_Profile( RAS_ARGS TStates aState )
+ {
+ if ( !ras.fProfile )
+ {
+ ras.cProfile = (PProfile)ras.top;
+ ras.fProfile = ras.cProfile;
+ ras.top += AlignProfileSize;
+ }
+
+ if ( ras.top >= ras.maxBuff )
+ {
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ switch ( aState )
+ {
+ case Ascending:
+ ras.cProfile->flow = Flow_Up;
+ FT_TRACE6(( "New ascending profile = %lx\n", (long)ras.cProfile ));
+ break;
+
+ case Descending:
+ ras.cProfile->flow = Flow_Down;
+ FT_TRACE6(( "New descending profile = %lx\n", (long)ras.cProfile ));
+ break;
+
+ default:
+ FT_ERROR(( "New_Profile: invalid profile direction!\n" ));
+ ras.error = Raster_Err_Invalid;
+ return FAILURE;
+ }
+
+ ras.cProfile->start = 0;
+ ras.cProfile->height = 0;
+ ras.cProfile->offset = ras.top;
+ ras.cProfile->link = (PProfile)0;
+ ras.cProfile->next = (PProfile)0;
+
+ if ( !ras.gProfile )
+ ras.gProfile = ras.cProfile;
+
+ ras.state = aState;
+ ras.fresh = TRUE;
+ ras.joint = FALSE;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* End_Profile */
+ /* */
+ /* <Description> */
+ /* Finalizes the current profile. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow or incoherency. */
+ /* */
+ static
+ Bool End_Profile( RAS_ARG )
+ {
+ Long h;
+ PProfile oldProfile;
+
+
+ h = ras.top - ras.cProfile->offset;
+
+ if ( h < 0 )
+ {
+ FT_ERROR(( "End_Profile: negative height encountered!\n" ));
+ ras.error = Raster_Err_Neg_Height;
+ return FAILURE;
+ }
+
+ if ( h > 0 )
+ {
+ FT_TRACE6(( "Ending profile %lx, start = %ld, height = %ld\n",
+ (long)ras.cProfile, ras.cProfile->start, h ));
+
+ oldProfile = ras.cProfile;
+ ras.cProfile->height = h;
+ ras.cProfile = (PProfile)ras.top;
+
+ ras.top += AlignProfileSize;
+
+ ras.cProfile->height = 0;
+ ras.cProfile->offset = ras.top;
+ oldProfile->next = ras.cProfile;
+ ras.num_Profs++;
+ }
+
+ if ( ras.top >= ras.maxBuff )
+ {
+ FT_TRACE1(( "overflow in End_Profile\n" ));
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ ras.joint = FALSE;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Insert_Y_Turn */
+ /* */
+ /* <Description> */
+ /* Inserts a salient into the sorted list placed on top of the render */
+ /* pool. */
+ /* */
+ /* <Input> */
+ /* New y scanline position. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow. */
+ /* */
+ static
+ Bool Insert_Y_Turn( RAS_ARGS Int y )
+ {
+ PLong y_turns;
+ Int y2, n;
+
+
+ n = ras.numTurns - 1;
+ y_turns = ras.sizeBuff - ras.numTurns;
+
+ /* look for first y value that is <= */
+ while ( n >= 0 && y < y_turns[n] )
+ n--;
+
+ /* if it is <, simply insert it, ignore if == */
+ if ( n >= 0 && y > y_turns[n] )
+ while ( n >= 0 )
+ {
+ y2 = y_turns[n];
+ y_turns[n] = y;
+ y = y2;
+ n--;
+ }
+
+ if ( n < 0 )
+ {
+ if ( ras.maxBuff <= ras.top )
+ {
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+ ras.maxBuff--;
+ ras.numTurns++;
+ ras.sizeBuff[-ras.numTurns] = y;
+ }
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Finalize_Profile_Table */
+ /* */
+ /* <Description> */
+ /* Adjusts all links in the profiles list. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow. */
+ /* */
+ static
+ Bool Finalize_Profile_Table( RAS_ARG )
+ {
+ Int bottom, top;
+ UShort n;
+ PProfile p;
+
+
+ n = ras.num_Profs;
+
+ if ( n > 1 )
+ {
+ p = ras.fProfile;
+ while ( n > 0 )
+ {
+ if ( n > 1 )
+ p->link = (PProfile)( p->offset + p->height );
+ else
+ p->link = NULL;
+
+ switch ( p->flow )
+ {
+ case Flow_Down:
+ bottom = p->start - p->height+1;
+ top = p->start;
+ p->start = bottom;
+ p->offset += p->height - 1;
+ break;
+
+ case Flow_Up:
+ default:
+ bottom = p->start;
+ top = p->start + p->height - 1;
+ }
+
+ if ( Insert_Y_Turn( RAS_VARS bottom ) ||
+ Insert_Y_Turn( RAS_VARS top + 1 ) )
+ return FAILURE;
+
+ p = p->link;
+ n--;
+ }
+ }
+ else
+ ras.fProfile = NULL;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Split_Conic */
+ /* */
+ /* <Description> */
+ /* Subdivides one conic Bezier into two joint sub-arcs in the Bezier */
+ /* stack. */
+ /* */
+ /* <Input> */
+ /* None (subdivided Bezier is taken from the top of the stack). */
+ /* */
+ /* <Note> */
+ /* This routine is the `beef' of this component. It is _the_ inner */
+ /* loop that should be optimized to hell to get the best performance. */
+ /* */
+ static
+ void Split_Conic( TPoint* base )
+ {
+ Long a, b;
+
+
+ base[4].x = base[2].x;
+ b = base[1].x;
+ a = base[3].x = ( base[2].x + b ) / 2;
+ b = base[1].x = ( base[0].x + b ) / 2;
+ base[2].x = ( a + b ) / 2;
+
+ base[4].y = base[2].y;
+ b = base[1].y;
+ a = base[3].y = ( base[2].y + b ) / 2;
+ b = base[1].y = ( base[0].y + b ) / 2;
+ base[2].y = ( a + b ) / 2;
+
+ /* hand optimized. gcc doesn't seem too good at common expression */
+ /* substitution and instruction scheduling ;-) */
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Split_Cubic */
+ /* */
+ /* <Description> */
+ /* Subdivides a third-order Bezier arc into two joint sub-arcs in the */
+ /* Bezier stack. */
+ /* */
+ /* <Note> */
+ /* This routine is the `beef' of the component. It is one of _the_ */
+ /* inner loops that should be optimized like hell to get the best */
+ /* performance. */
+ /* */
+ static
+ void Split_Cubic( TPoint* base )
+ {
+ Long a, b, c, d;
+
+
+ base[6].x = base[3].x;
+ c = base[1].x;
+ d = base[2].x;
+ base[1].x = a = ( base[0].x + c + 1 ) >> 1;
+ base[5].x = b = ( base[3].x + d + 1 ) >> 1;
+ c = ( c + d + 1 ) >> 1;
+ base[2].x = a = ( a + c + 1 ) >> 1;
+ base[4].x = b = ( b + c + 1 ) >> 1;
+ base[3].x = ( a + b + 1 ) >> 1;
+
+ base[6].y = base[3].y;
+ c = base[1].y;
+ d = base[2].y;
+ base[1].y = a = ( base[0].y + c + 1 ) >> 1;
+ base[5].y = b = ( base[3].y + d + 1 ) >> 1;
+ c = ( c + d + 1 ) >> 1;
+ base[2].y = a = ( a + c + 1 ) >> 1;
+ base[4].y = b = ( b + c + 1 ) >> 1;
+ base[3].y = ( a + b + 1 ) >> 1;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Line_Up */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an ascending line segment and stores */
+ /* them in the render pool. */
+ /* */
+ /* <Input> */
+ /* x1 :: The x-coordinate of the segment's start point. */
+ /* */
+ /* y1 :: The y-coordinate of the segment's start point. */
+ /* */
+ /* x2 :: The x-coordinate of the segment's end point. */
+ /* */
+ /* y2 :: The y-coordinate of the segment's end point. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static
+ Bool Line_Up( RAS_ARGS Long x1, Long y1,
+ Long x2, Long y2,
+ Long miny, Long maxy )
+ {
+ Long Dx, Dy;
+ Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
+ Long Ix, Rx, Ax;
+
+ PLong top;
+
+
+ Dx = x2 - x1;
+ Dy = y2 - y1;
+
+ if ( Dy <= 0 || y2 < miny || y1 > maxy )
+ return SUCCESS;
+
+ if ( y1 < miny )
+ {
+ /* Take care: miny-y1 can be a very large value; we use */
+ /* a slow MulDiv function to avoid clipping bugs */
+ x1 += SMulDiv( Dx, miny - y1, Dy );
+ e1 = TRUNC( miny );
+ f1 = 0;
+ }
+ else
+ {
+ e1 = TRUNC( y1 );
+ f1 = FRAC( y1 );
+ }
+
+ if ( y2 > maxy )
+ {
+ /* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
+ e2 = TRUNC( maxy );
+ f2 = 0;
+ }
+ else
+ {
+ e2 = TRUNC( y2 );
+ f2 = FRAC( y2 );
+ }
+
+ if ( f1 > 0 )
+ {
+ if ( e1 == e2 )
+ return SUCCESS;
+ else
+ {
+ x1 += FMulDiv( Dx, ras.precision - f1, Dy );
+ e1 += 1;
+ }
+ }
+ else
+ if ( ras.joint )
+ {
+ ras.top--;
+ ras.joint = FALSE;
+ }
+
+ ras.joint = ( f2 == 0 );
+
+ if ( ras.fresh )
+ {
+ ras.cProfile->start = e1;
+ ras.fresh = FALSE;
+ }
+
+ size = e2 - e1 + 1;
+ if ( ras.top + size >= ras.maxBuff )
+ {
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ if ( Dx > 0 )
+ {
+ Ix = ( ras.precision * Dx ) / Dy;
+ Rx = ( ras.precision * Dx ) % Dy;
+ Dx = 1;
+ }
+ else
+ {
+ Ix = -( ( ras.precision * -Dx ) / Dy );
+ Rx = ( ras.precision * -Dx ) % Dy;
+ Dx = -1;
+ }
+
+ Ax = -Dy;
+ top = ras.top;
+
+ while ( size > 0 )
+ {
+ *top++ = x1;
+
+ x1 += Ix;
+ Ax += Rx;
+ if ( Ax >= 0 )
+ {
+ Ax -= Dy;
+ x1 += Dx;
+ }
+ size--;
+ }
+
+ ras.top = top;
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Line_Down */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an descending line segment and */
+ /* stores them in the render pool. */
+ /* */
+ /* <Input> */
+ /* x1 :: The x-coordinate of the segment's start point. */
+ /* */
+ /* y1 :: The y-coordinate of the segment's start point. */
+ /* */
+ /* x2 :: The x-coordinate of the segment's end point. */
+ /* */
+ /* y2 :: The y-coordinate of the segment's end point. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static
+ Bool Line_Down( RAS_ARGS Long x1, Long y1,
+ Long x2, Long y2,
+ Long miny, Long maxy )
+ {
+ Bool result, fresh;
+
+
+ fresh = ras.fresh;
+
+ result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
+
+ if ( fresh && !ras.fresh )
+ ras.cProfile->start = -ras.cProfile->start;
+
+ return result;
+ }
+
+
+ /* A function type describing the functions used to split Bezier arcs */
+ typedef void (*TSplitter)( TPoint* base );
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Bezier_Up */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an ascending Bezier arc and stores */
+ /* them in the render pool. */
+ /* */
+ /* <Input> */
+ /* degree :: The degree of the Bezier arc (either 2 or 3). */
+ /* */
+ /* splitter :: The function to split Bezier arcs. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static
+ Bool Bezier_Up( RAS_ARGS Int degree,
+ TSplitter splitter,
+ Long miny,
+ Long maxy )
+ {
+ Long y1, y2, e, e2, e0;
+ Short f1;
+
+ TPoint* arc;
+ TPoint* start_arc;
+
+ PLong top;
+
+
+ arc = ras.arc;
+ y1 = arc[degree].y;
+ y2 = arc[0].y;
+ top = ras.top;
+
+ if ( y2 < miny || y1 > maxy )
+ goto Fin;
+
+ e2 = FLOOR( y2 );
+
+ if ( e2 > maxy )
+ e2 = maxy;
+
+ e0 = miny;
+
+ if ( y1 < miny )
+ e = miny;
+ else
+ {
+ e = CEILING( y1 );
+ f1 = FRAC( y1 );
+ e0 = e;
+
+ if ( f1 == 0 )
+ {
+ if ( ras.joint )
+ {
+ top--;
+ ras.joint = FALSE;
+ }
+
+ *top++ = arc[degree].x;
+
+ e += ras.precision;
+ }
+ }
+
+ if ( ras.fresh )
+ {
+ ras.cProfile->start = TRUNC( e0 );
+ ras.fresh = FALSE;
+ }
+
+ if ( e2 < e )
+ goto Fin;
+
+ if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
+ {
+ ras.top = top;
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ start_arc = arc;
+
+ while ( arc >= start_arc && e <= e2 )
+ {
+ ras.joint = FALSE;
+
+ y2 = arc[0].y;
+
+ if ( y2 > e )
+ {
+ y1 = arc[degree].y;
+ if ( y2 - y1 >= ras.precision_step )
+ {
+ splitter( arc );
+ arc += degree;
+ }
+ else
+ {
+ *top++ = arc[degree].x + FMulDiv( arc[0].x-arc[degree].x,
+ e - y1, y2 - y1 );
+ arc -= degree;
+ e += ras.precision;
+ }
+ }
+ else
+ {
+ if ( y2 == e )
+ {
+ ras.joint = TRUE;
+ *top++ = arc[0].x;
+
+ e += ras.precision;
+ }
+ arc -= degree;
+ }
+ }
+
+ Fin:
+ ras.top = top;
+ ras.arc -= degree;
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Bezier_Down */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an descending Bezier arc and stores */
+ /* them in the render pool. */
+ /* */
+ /* <Input> */
+ /* degree :: The degree of the Bezier arc (either 2 or 3). */
+ /* */
+ /* splitter :: The function to split Bezier arcs. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static
+ Bool Bezier_Down( RAS_ARGS Int degree,
+ TSplitter splitter,
+ Long miny,
+ Long maxy )
+ {
+ TPoint* arc = ras.arc;
+ Bool result, fresh;
+
+
+ arc[0].y = -arc[0].y;
+ arc[1].y = -arc[1].y;
+ arc[2].y = -arc[2].y;
+ if ( degree > 2 )
+ arc[3].y = -arc[3].y;
+
+ fresh = ras.fresh;
+
+ result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny );
+
+ if ( fresh && !ras.fresh )
+ ras.cProfile->start = -ras.cProfile->start;
+
+ arc[0].y = -arc[0].y;
+ return result;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Line_To */
+ /* */
+ /* <Description> */
+ /* Injects a new line segment and adjusts Profiles list. */
+ /* */
+ /* <Input> */
+ /* x :: The x-coordinate of the segment's end point (its start point */
+ /* is stored in `LastX'). */
+ /* */
+ /* y :: The y-coordinate of the segment's end point (its start point */
+ /* is stored in `LastY'). */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
+ /* profile. */
+ /* */
+ static
+ Bool Line_To( RAS_ARGS Long x,
+ Long y )
+ {
+ /* First, detect a change of direction */
+
+ switch ( ras.state )
+ {
+ case Unknown:
+ if ( y > ras.lastY )
+ {
+ if ( New_Profile( RAS_VARS Ascending ) )
+ return FAILURE;
+ }
+ else
+ {
+ if ( y < ras.lastY )
+ if ( New_Profile( RAS_VARS Descending ) )
+ return FAILURE;
+ }
+ break;
+
+ case Ascending:
+ if ( y < ras.lastY )
+ {
+ if ( End_Profile( RAS_VAR ) ||
+ New_Profile( RAS_VARS Descending ) )
+ return FAILURE;
+ }
+ break;
+
+ case Descending:
+ if ( y > ras.lastY )
+ {
+ if ( End_Profile( RAS_VAR ) ||
+ New_Profile( RAS_VARS Ascending ) )
+ return FAILURE;
+ }
+ break;
+
+ default:
+ ;
+ }
+
+ /* Then compute the lines */
+
+ switch ( ras.state )
+ {
+ case Ascending:
+ if ( Line_Up ( RAS_VARS ras.lastX, ras.lastY,
+ x, y, ras.minY, ras.maxY ) )
+ return FAILURE;
+ break;
+
+ case Descending:
+ if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
+ x, y, ras.minY, ras.maxY ) )
+ return FAILURE;
+ break;
+
+ default:
+ ;
+ }
+
+ ras.lastX = x;
+ ras.lastY = y;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Conic_To */
+ /* */
+ /* <Description> */
+ /* Injects a new conic arc and adjusts the profile list. */
+ /* */
+ /* <Input> */
+ /* cx :: The x-coordinate of the arc's new control point. */
+ /* */
+ /* cy :: The y-coordinate of the arc's new control point. */
+ /* */
+ /* x :: The x-coordinate of the arc's end point (its start point is */
+ /* stored in `LastX'). */
+ /* */
+ /* y :: The y-coordinate of the arc's end point (its start point is */
+ /* stored in `LastY'). */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
+ /* profile. */
+ /* */
+ static
+ Bool Conic_To( RAS_ARGS Long cx,
+ Long cy,
+ Long x,
+ Long y )
+ {
+ Long y1, y2, y3, x3, ymin, ymax;
+ TStates state_bez;
+
+
+ ras.arc = ras.arcs;
+ ras.arc[2].x = ras.lastX;
+ ras.arc[2].y = ras.lastY;
+ ras.arc[1].x = cx; ras.arc[1].y = cy;
+ ras.arc[0].x = x; ras.arc[0].y = y;
+
+ do
+ {
+ y1 = ras.arc[2].y;
+ y2 = ras.arc[1].y;
+ y3 = ras.arc[0].y;
+ x3 = ras.arc[0].x;
+
+ /* first, categorize the Bezier arc */
+
+ if ( y1 <= y3 )
+ {
+ ymin = y1;
+ ymax = y3;
+ }
+ else
+ {
+ ymin = y3;
+ ymax = y1;
+ }
+
+ if ( y2 < ymin || y2 > ymax )
+ {
+ /* this arc has no given direction, split it! */
+ Split_Conic( ras.arc );
+ ras.arc += 2;
+ }
+ else if ( y1 == y3 )
+ {
+ /* this arc is flat, ignore it and pop it from the Bezier stack */
+ ras.arc -= 2;
+ }
+ else
+ {
+ /* the arc is y-monotonous, either ascending or descending */
+ /* detect a change of direction */
+ state_bez = y1 < y3 ? Ascending : Descending;
+ if ( ras.state != state_bez )
+ {
+ /* finalize current profile if any */
+ if ( ras.state != Unknown &&
+ End_Profile( RAS_VAR ) )
+ goto Fail;
+
+ /* create a new profile */
+ if ( New_Profile( RAS_VARS state_bez ) )
+ goto Fail;
+ }
+
+ /* now call the appropriate routine */
+ if ( state_bez == Ascending )
+ {
+ if ( Bezier_Up( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+ else
+ if ( Bezier_Down( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+
+ } while ( ras.arc >= ras.arcs );
+
+ ras.lastX = x3;
+ ras.lastY = y3;
+
+ return SUCCESS;
+
+ Fail:
+ return FAILURE;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Cubic_To */
+ /* */
+ /* <Description> */
+ /* Injects a new cubic arc and adjusts the profile list. */
+ /* */
+ /* <Input> */
+ /* cx1 :: The x-coordinate of the arc's first new control point. */
+ /* */
+ /* cy1 :: The y-coordinate of the arc's first new control point. */
+ /* */
+ /* cx2 :: The x-coordinate of the arc's second new control point. */
+ /* */
+ /* cy2 :: The y-coordinate of the arc's second new control point. */
+ /* */
+ /* x :: The x-coordinate of the arc's end point (its start point is */
+ /* stored in `LastX'). */
+ /* */
+ /* y :: The y-coordinate of the arc's end point (its start point is */
+ /* stored in `LastY'). */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
+ /* profile. */
+ /* */
+ static
+ Bool Cubic_To( RAS_ARGS Long cx1,
+ Long cy1,
+ Long cx2,
+ Long cy2,
+ Long x,
+ Long y )
+ {
+ Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2;
+ TStates state_bez;
+
+
+ ras.arc = ras.arcs;
+ ras.arc[3].x = ras.lastX;
+ ras.arc[3].y = ras.lastY;
+ ras.arc[2].x = cx1; ras.arc[2].y = cy1;
+ ras.arc[1].x = cx2; ras.arc[1].y = cy2;
+ ras.arc[0].x = x; ras.arc[0].y = y;
+
+ do
+ {
+ y1 = ras.arc[3].y;
+ y2 = ras.arc[2].y;
+ y3 = ras.arc[1].y;
+ y4 = ras.arc[0].y;
+ x4 = ras.arc[0].x;
+
+ /* first, categorize the Bezier arc */
+
+ if ( y1 <= y4 )
+ {
+ ymin1 = y1;
+ ymax1 = y4;
+ }
+ else
+ {
+ ymin1 = y4;
+ ymax1 = y1;
+ }
+
+ if ( y2 <= y3 )
+ {
+ ymin2 = y2;
+ ymax2 = y3;
+ }
+ else
+ {
+ ymin2 = y3;
+ ymax2 = y2;
+ }
+
+ if ( ymin2 < ymin1 || ymax2 > ymax1 )
+ {
+ /* this arc has no given direction, split it! */
+ Split_Cubic( ras.arc );
+ ras.arc += 3;
+ }
+ else if ( y1 == y4 )
+ {
+ /* this arc is flat, ignore it and pop it from the Bezier stack */
+ ras.arc -= 3;
+ }
+ else
+ {
+ state_bez = y1 <= y4 ? Ascending : Descending;
+
+ /* detect a change of direction */
+ if ( ras.state != state_bez )
+ {
+ if ( ras.state != Unknown &&
+ End_Profile( RAS_VAR ) )
+ goto Fail;
+
+ if ( New_Profile( RAS_VARS state_bez ) )
+ goto Fail;
+ }
+
+ /* compute intersections */
+ if ( state_bez == Ascending )
+ {
+ if ( Bezier_Up( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+ else
+ if ( Bezier_Down( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+
+ } while ( ras.arc >= ras.arcs );
+
+ ras.lastX = x4;
+ ras.lastY = y4;
+
+ return SUCCESS;
+
+ Fail:
+ return FAILURE;
+ }
+
+
+#undef SWAP_
+#define SWAP_( x, y ) do \
+ { \
+ Long swap = x; \
+ \
+ \
+ x = y; \
+ y = swap; \
+ } while ( 0 )
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Decompose_Curve */
+ /* */
+ /* <Description> */
+ /* Scans the outline arays in order to emit individual segments and */
+ /* Beziers by calling Line_To() and Bezier_To(). It handles all */
+ /* weird cases, like when the first point is off the curve, or when */
+ /* there are simply no `on' points in the contour! */
+ /* */
+ /* <Input> */
+ /* first :: The index of the first point in the contour. */
+ /* */
+ /* last :: The index of the last point in the contour. */
+ /* */
+ /* flipped :: If set, flip the direction of the curve. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on error. */
+ /* */
+ static
+ Bool Decompose_Curve( RAS_ARGS UShort first,
+ UShort last,
+ int flipped )
+ {
+ FT_Vector v_last;
+ FT_Vector v_control;
+ FT_Vector v_start;
+
+ FT_Vector* points;
+ FT_Vector* point;
+ FT_Vector* limit;
+ char* tags;
+
+ char tag; /* current point's state */
+
+
+ points = ras.outline.points;
+ limit = points + last;
+
+ v_start.x = SCALED( points[first].x );
+ v_start.y = SCALED( points[first].y );
+ v_last.x = SCALED( points[last].x );
+ v_last.y = SCALED( points[last].y );
+
+ if ( flipped )
+ {
+ SWAP_( v_start.x, v_start.y );
+ SWAP_( v_last.x, v_last.y );
+ }
+
+ v_control = v_start;
+
+ point = points + first;
+ tags = ras.outline.tags + first;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ /* A contour cannot start with a cubic control point! */
+ if ( tag == FT_Curve_Tag_Cubic )
+ goto Invalid_Outline;
+
+ /* check first point to determine origin */
+ if ( tag == FT_Curve_Tag_Conic )
+ {
+ /* first point is conic control. Yes, this happens. */
+ if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_Curve_Tag_On )
+ {
+ /* start at last point if it is on the curve */
+ v_start = v_last;
+ limit--;
+ }
+ else
+ {
+ /* if both first and last points are conic, */
+ /* start at their middle and record its position */
+ /* for closure */
+ v_start.x = ( v_start.x + v_last.x ) / 2;
+ v_start.y = ( v_start.y + v_last.y ) / 2;
+
+ v_last = v_start;
+ }
+ point--;
+ tags--;
+ }
+
+ ras.lastX = v_start.x;
+ ras.lastY = v_start.y;
+
+ while ( point < limit )
+ {
+ point++;
+ tags++;
+
+ tag = FT_CURVE_TAG( tags[0] );
+
+ switch ( tag )
+ {
+ case FT_Curve_Tag_On: /* emit a single line_to */
+ {
+ Long x, y;
+
+
+ x = SCALED( point->x );
+ y = SCALED( point->y );
+ if ( flipped )
+ SWAP_( x, y );
+
+ if ( Line_To( RAS_VARS x, y ) )
+ goto Fail;
+ continue;
+ }
+
+ case FT_Curve_Tag_Conic: /* consume conic arcs */
+ {
+ v_control.x = SCALED( point[0].x );
+ v_control.y = SCALED( point[0].y );
+
+ if ( flipped )
+ SWAP_( v_control.x, v_control.y );
+
+ Do_Conic:
+ if ( point < limit )
+ {
+ FT_Vector v_middle;
+ Long x, y;
+
+
+ point++;
+ tags++;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ x = SCALED( point[0].x );
+ y = SCALED( point[0].y );
+
+ if ( flipped )
+ SWAP_( x, y );
+
+ if ( tag == FT_Curve_Tag_On )
+ {
+ if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) )
+ goto Fail;
+ continue;
+ }
+
+ if ( tag != FT_Curve_Tag_Conic )
+ goto Invalid_Outline;
+
+ v_middle.x = ( v_control.x + x ) / 2;
+ v_middle.y = ( v_control.y + y ) / 2;
+
+ if ( Conic_To( RAS_VARS v_control.x, v_control.y,
+ v_middle.x, v_middle.y ) )
+ goto Fail;
+
+ v_control.x = x;
+ v_control.y = y;
+
+ goto Do_Conic;
+ }
+
+ if ( Conic_To( RAS_VARS v_control.x, v_control.y,
+ v_start.x, v_start.y ) )
+ goto Fail;
+
+ goto Close;
+ }
+
+ default: /* FT_Curve_Tag_Cubic */
+ {
+ Long x1, y1, x2, y2, x3, y3;
+
+
+ if ( point + 1 > limit ||
+ FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic )
+ goto Invalid_Outline;
+
+ point += 2;
+ tags += 2;
+
+ x1 = SCALED( point[-2].x );
+ y1 = SCALED( point[-2].y );
+ x2 = SCALED( point[-1].x );
+ y2 = SCALED( point[-1].y );
+ x3 = SCALED( point[ 0].x );
+ y3 = SCALED( point[ 0].y );
+
+ if ( flipped )
+ {
+ SWAP_( x1, y1 );
+ SWAP_( x2, y2 );
+ SWAP_( x3, y3 );
+ }
+
+ if ( point <= limit )
+ {
+ if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) )
+ goto Fail;
+ continue;
+ }
+
+ if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) )
+ goto Fail;
+ goto Close;
+ }
+ }
+ }
+
+ /* close the contour with a line segment */
+ if ( Line_To( RAS_VARS v_start.x, v_start.y ) )
+ goto Fail;
+
+ Close:
+ return SUCCESS;
+
+ Invalid_Outline:
+ ras.error = Raster_Err_Invalid;
+
+ Fail:
+ return FAILURE;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Convert_Glyph */
+ /* */
+ /* <Description> */
+ /* Converts a glyph into a series of segments and arcs and makes a */
+ /* profiles list with them. */
+ /* */
+ /* <Input> */
+ /* flipped :: If set, flip the direction of curve. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE if any error was encountered during */
+ /* rendering. */
+ /* */
+ static
+ Bool Convert_Glyph( RAS_ARGS int flipped )
+ {
+ Short i;
+ UShort start;
+
+ PProfile lastProfile;
+
+
+ ras.fProfile = NULL;
+ ras.joint = FALSE;
+ ras.fresh = FALSE;
+
+ ras.maxBuff = ras.sizeBuff - AlignProfileSize;
+
+ ras.numTurns = 0;
+
+ ras.cProfile = (PProfile)ras.top;
+ ras.cProfile->offset = ras.top;
+ ras.num_Profs = 0;
+
+ start = 0;
+
+ for ( i = 0; i < ras.outline.n_contours; i++ )
+ {
+ ras.state = Unknown;
+ ras.gProfile = NULL;
+
+ if ( Decompose_Curve( RAS_VARS start, ras.outline.contours[i], flipped ) )
+ return FAILURE;
+
+ start = ras.outline.contours[i] + 1;
+
+ /* We must now see whether the extreme arcs join or not */
+ if ( FRAC( ras.lastY ) == 0 &&
+ ras.lastY >= ras.minY &&
+ ras.lastY <= ras.maxY )
+ if ( ras.gProfile && ras.gProfile->flow == ras.cProfile->flow )
+ ras.top--;
+ /* Note that ras.gProfile can be nil if the contour was too small */
+ /* to be drawn. */
+
+ lastProfile = ras.cProfile;
+ if ( End_Profile( RAS_VAR ) )
+ return FAILURE;
+
+ /* close the `next profile in contour' linked list */
+ if ( ras.gProfile )
+ lastProfile->next = ras.gProfile;
+ }
+
+ if ( Finalize_Profile_Table( RAS_VAR ) )
+ return FAILURE;
+
+ return ( ras.top < ras.maxBuff ? SUCCESS : FAILURE );
+ }
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** SCAN-LINE SWEEPS AND DRAWING **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* Init_Linked */
+ /* */
+ /* Initializes an empty linked list. */
+ /* */
+ static
+ void Init_Linked( TProfileList* l )
+ {
+ *l = NULL;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* InsNew */
+ /* */
+ /* Inserts a new profile in a linked list. */
+ /* */
+ static
+ void InsNew( PProfileList list,
+ PProfile profile )
+ {
+ PProfile *old, current;
+ Long x;
+
+
+ old = list;
+ current = *old;
+ x = profile->X;
+
+ while ( current )
+ {
+ if ( x < current->X )
+ break;
+ old = ¤t->link;
+ current = *old;
+ }
+
+ profile->link = current;
+ *old = profile;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* DelOld */
+ /* */
+ /* Removes an old profile from a linked list. */
+ /* */
+ static
+ void DelOld( PProfileList list,
+ PProfile profile )
+ {
+ PProfile *old, current;
+
+
+ old = list;
+ current = *old;
+
+ while ( current )
+ {
+ if ( current == profile )
+ {
+ *old = current->link;
+ return;
+ }
+
+ old = ¤t->link;
+ current = *old;
+ }
+
+ /* we should never get there, unless the profile was not part of */
+ /* the list. */
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Update */
+ /* */
+ /* Update all X offsets of a drawing list. */
+ /* */
+ static
+ void Update( PProfile first )
+ {
+ PProfile current = first;
+
+
+ while ( current )
+ {
+ current->X = *current->offset;
+ current->offset += current->flow;
+ current->height--;
+ current = current->link;
+ }
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Sort */
+ /* */
+ /* Sorts a trace list. In 95%, the list is already sorted. We need */
+ /* an algorithm which is fast in this case. Bubble sort is enough */
+ /* and simple. */
+ /* */
+ static
+ void Sort( PProfileList list )
+ {
+ PProfile *old, current, next;
+
+
+ /* First, set the new X coordinate of each profile */
+ Update( *list );
+
+ /* Then sort them */
+ old = list;
+ current = *old;
+
+ if ( !current )
+ return;
+
+ next = current->link;
+
+ while ( next )
+ {
+ if ( current->X <= next->X )
+ {
+ old = ¤t->link;
+ current = *old;
+
+ if ( !current )
+ return;
+ }
+ else
+ {
+ *old = next;
+ current->link = next->link;
+ next->link = current;
+
+ old = list;
+ current = *old;
+ }
+
+ next = current->link;
+ }
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Vertical Sweep Procedure Set */
+ /* */
+ /* These four routines are used during the vertical black/white */
+ /* sweep phase by the generic Draw_Sweep() function. */
+ /* */
+ /*************************************************************************/
+
+ static
+ void Vertical_Sweep_Init( RAS_ARGS Short* min,
+ Short* max )
+ {
+ Long pitch = ras.target.pitch;
+
+ UNUSED( max );
+
+
+ ras.traceIncr = (Short)-pitch;
+ ras.traceOfs = -*min * pitch;
+ if ( pitch > 0 )
+ ras.traceOfs += ( ras.target.rows - 1 ) * pitch;
+
+ ras.gray_min_x = 0;
+ ras.gray_max_x = 0;
+ }
+
+
+ static
+ void Vertical_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ Short c1, c2;
+ Byte f1, f2;
+ Byte* target;
+
+ UNUSED( y );
+ UNUSED( left );
+ UNUSED( right );
+
+
+ /* Drop-out control */
+
+ e1 = TRUNC( CEILING( x1 ) );
+
+ if ( x2 - x1 - ras.precision <= ras.precision_jitter )
+ e2 = e1;
+ else
+ e2 = TRUNC( FLOOR( x2 ) );
+
+ if ( e2 >= 0 && e1 < ras.bWidth )
+ {
+ if ( e1 < 0 ) e1 = 0;
+ if ( e2 >= ras.bWidth ) e2 = ras.bWidth - 1;
+
+ c1 = (Short)( e1 >> 3 );
+ c2 = (Short)( e2 >> 3 );
+
+ f1 = (unsigned char)0xFF >> ( e1 & 7 );
+ f2 = ~((unsigned char)0x7F >> ( e2 & 7 ));
+
+ if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1;
+ if ( ras.gray_max_x < c2 ) ras.gray_max_x = c2;
+
+ target = ras.bTarget + ras.traceOfs + c1;
+ c2 -= c1;
+
+ if ( c2 > 0 )
+ {
+ target[0] |= f1;
+
+ /* memset() is slower than the following code on many platforms. */
+ /* This is due to the fact that, in the vast majority of cases, */
+ /* the span length in bytes is relatively small. */
+ c2--;
+ while ( c2 > 0 )
+ {
+ *(++target) = 0xFF;
+ c2--;
+ }
+ target[1] |= f2;
+ }
+ else
+ *target |= ( f1 & f2 );
+ }
+ }
+
+
+ static
+ void Vertical_Sweep_Drop( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ Short c1, f1;
+
+
+ /* Drop-out control */
+
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 > e2 )
+ {
+ if ( e1 == e2 + ras.precision )
+ {
+ switch ( ras.dropOutControl )
+ {
+ case 1:
+ e1 = e2;
+ break;
+
+ case 4:
+ e1 = CEILING( (x1 + x2 + 1) / 2 );
+ break;
+
+ case 2:
+ case 5:
+ /* Drop-out Control Rule #4 */
+
+ /* The spec is not very clear regarding rule #4. It */
+ /* presents a method that is way too costly to implement */
+ /* while the general idea seems to get rid of `stubs'. */
+ /* */
+ /* Here, we only get rid of stubs recognized if: */
+ /* */
+ /* upper stub: */
+ /* */
+ /* - P_Left and P_Right are in the same contour */
+ /* - P_Right is the successor of P_Left in that contour */
+ /* - y is the top of P_Left and P_Right */
+ /* */
+ /* lower stub: */
+ /* */
+ /* - P_Left and P_Right are in the same contour */
+ /* - P_Left is the successor of P_Right in that contour */
+ /* - y is the bottom of P_Left */
+ /* */
+
+ /* FIXXXME: uncommenting this line solves the disappearing */
+ /* bit problem in the `7' of verdana 10pts, but */
+ /* makes a new one in the `C' of arial 14pts */
+
+#if 0
+ if ( x2 - x1 < ras.precision_half )
+#endif
+ {
+ /* upper stub test */
+ if ( left->next == right && left->height <= 0 )
+ return;
+
+ /* lower stub test */
+ if ( right->next == left && left->start == y )
+ return;
+ }
+
+ /* check that the rightmost pixel isn't set */
+
+ e1 = TRUNC( e1 );
+
+ c1 = (Short)( e1 >> 3 );
+ f1 = e1 & 7;
+
+ if ( e1 >= 0 && e1 < ras.bWidth &&
+ ras.bTarget[ras.traceOfs + c1] & ( 0x80 >> f1 ) )
+ return;
+
+ if ( ras.dropOutControl == 2 )
+ e1 = e2;
+ else
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+
+ break;
+
+ default:
+ return; /* unsupported mode */
+ }
+ }
+ else
+ return;
+ }
+
+ e1 = TRUNC( e1 );
+
+ if ( e1 >= 0 && e1 < ras.bWidth )
+ {
+ c1 = (Short)( e1 >> 3 );
+ f1 = e1 & 7;
+
+ if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1;
+ if ( ras.gray_max_x < c1 ) ras.gray_max_x = c1;
+
+ ras.bTarget[ras.traceOfs + c1] |= (char)( 0x80 >> f1 );
+ }
+ }
+
+
+ static
+ void Vertical_Sweep_Step( RAS_ARG )
+ {
+ ras.traceOfs += ras.traceIncr;
+ }
+
+
+ /***********************************************************************/
+ /* */
+ /* Horizontal Sweep Procedure Set */
+ /* */
+ /* These four routines are used during the horizontal black/white */
+ /* sweep phase by the generic Draw_Sweep() function. */
+ /* */
+ /***********************************************************************/
+
+ static
+ void Horizontal_Sweep_Init( RAS_ARGS Short* min,
+ Short* max )
+ {
+ /* nothing, really */
+ UNUSED( raster );
+ UNUSED( min );
+ UNUSED( max );
+ }
+
+
+ static
+ void Horizontal_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ PByte bits;
+ Byte f1;
+
+ UNUSED( left );
+ UNUSED( right );
+
+
+ if ( x2 - x1 < ras.precision )
+ {
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 == e2 )
+ {
+ bits = ras.bTarget + ( y >> 3 );
+ f1 = (Byte)( 0x80 >> ( y & 7 ) );
+
+ e1 = TRUNC( e1 );
+
+ if ( e1 >= 0 && e1 < ras.target.rows )
+ {
+ PByte p;
+
+
+ p = bits - e1*ras.target.pitch;
+ if ( ras.target.pitch > 0 )
+ p += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ p[0] |= f1;
+ }
+ }
+ }
+ }
+
+
+ static
+ void Horizontal_Sweep_Drop( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ PByte bits;
+ Byte f1;
+
+
+ /* During the horizontal sweep, we only take care of drop-outs */
+
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 > e2 )
+ {
+ if ( e1 == e2 + ras.precision )
+ {
+ switch ( ras.dropOutControl )
+ {
+ case 1:
+ e1 = e2;
+ break;
+
+ case 4:
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+ break;
+
+ case 2:
+ case 5:
+
+ /* Drop-out Control Rule #4 */
+
+ /* The spec is not very clear regarding rule #4. It */
+ /* presents a method that is way too costly to implement */
+ /* while the general idea seems to get rid of `stubs'. */
+ /* */
+
+ /* rightmost stub test */
+ if ( left->next == right && left->height <= 0 )
+ return;
+
+ /* leftmost stub test */
+ if ( right->next == left && left->start == y )
+ return;
+
+ /* check that the rightmost pixel isn't set */
+
+ e1 = TRUNC( e1 );
+
+ bits = ras.bTarget + ( y >> 3 );
+ f1 = (Byte)( 0x80 >> ( y & 7 ) );
+
+ bits -= e1 * ras.target.pitch;
+ if ( ras.target.pitch > 0 )
+ bits += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ if ( e1 >= 0 &&
+ e1 < ras.target.rows &&
+ *bits & f1 )
+ return;
+
+ if ( ras.dropOutControl == 2 )
+ e1 = e2;
+ else
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+
+ break;
+
+ default:
+ return; /* unsupported mode */
+ }
+ }
+ else
+ return;
+ }
+
+ bits = ras.bTarget + ( y >> 3 );
+ f1 = (Byte)( 0x80 >> ( y & 7 ) );
+
+ e1 = TRUNC( e1 );
+
+ if ( e1 >= 0 && e1 < ras.target.rows )
+ {
+ bits -= e1 * ras.target.pitch;
+ if ( ras.target.pitch > 0 )
+ bits += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ bits[0] |= f1;
+ }
+ }
+
+
+ static
+ void Horizontal_Sweep_Step( RAS_ARG )
+ {
+ /* Nothing, really */
+ UNUSED( raster );
+ }
+
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+
+ /*************************************************************************/
+ /* */
+ /* Vertical Gray Sweep Procedure Set */
+ /* */
+ /* These two routines are used during the vertical gray-levels sweep */
+ /* phase by the generic Draw_Sweep() function. */
+ /* */
+ /* NOTES */
+ /* */
+ /* - The target pixmap's width *must* be a multiple of 4. */
+ /* */
+ /* - You have to use the function Vertical_Sweep_Span() for the gray */
+ /* span call. */
+ /* */
+ /*************************************************************************/
+
+ static
+ void Vertical_Gray_Sweep_Init( RAS_ARGS Short* min,
+ Short* max )
+ {
+ Long pitch, byte_len;
+
+
+ *min = *min & -2;
+ *max = ( *max + 3 ) & -2;
+
+ ras.traceOfs = 0;
+ pitch = ras.target.pitch;
+ byte_len = -pitch;
+ ras.traceIncr = (Short)byte_len;
+ ras.traceG = ( *min / 2 ) * byte_len;
+
+ if ( pitch > 0 )
+ {
+ ras.traceG += ( ras.target.rows - 1 ) * pitch;
+ byte_len = -byte_len;
+ }
+
+ ras.gray_min_x = (Short)byte_len;
+ ras.gray_max_x = -(Short)byte_len;
+ }
+
+
+ static
+ void Vertical_Gray_Sweep_Step( RAS_ARG )
+ {
+ Int c1, c2;
+ PByte pix, bit, bit2;
+ Int* count = ras.count_table;
+ Byte* grays;
+
+
+ ras.traceOfs += ras.gray_width;
+
+ if ( ras.traceOfs > ras.gray_width )
+ {
+ pix = ras.gTarget + ras.traceG + ras.gray_min_x * 4;
+ grays = ras.grays;
+
+ if ( ras.gray_max_x >= 0 )
+ {
+ Long last_pixel = ras.target.width - 1;
+ Int last_cell = last_pixel >> 2;
+ Int last_bit = last_pixel & 3;
+ Bool over = 0;
+
+ if ( ras.gray_max_x >= last_cell && last_bit != 3 )
+ {
+ ras.gray_max_x = last_cell - 1;
+ over = 1;
+ }
+
+ if ( ras.gray_min_x < 0 )
+ ras.gray_min_x = 0;
+
+ bit = ras.bTarget + ras.gray_min_x;
+ bit2 = bit + ras.gray_width;
+
+ c1 = ras.gray_max_x - ras.gray_min_x;
+
+ while ( c1 >= 0 )
+ {
+ c2 = count[*bit] + count[*bit2];
+
+ if ( c2 )
+ {
+ pix[0] = grays[(c2 >> 12) & 0x000F];
+ pix[1] = grays[(c2 >> 8 ) & 0x000F];
+ pix[2] = grays[(c2 >> 4 ) & 0x000F];
+ pix[3] = grays[ c2 & 0x000F];
+
+ *bit = 0;
+ *bit2 = 0;
+ }
+
+ bit++;
+ bit2++;
+ pix += 4;
+ c1--;
+ }
+
+ if ( over )
+ {
+ c2 = count[*bit] + count[*bit2];
+ if ( c2 )
+ {
+ switch ( last_bit )
+ {
+ case 2:
+ pix[2] = grays[(c2 >> 4 ) & 0x000F];
+ case 1:
+ pix[1] = grays[(c2 >> 8 ) & 0x000F];
+ default:
+ pix[0] = grays[(c2 >> 12) & 0x000F];
+ }
+
+ *bit = 0;
+ *bit2 = 0;
+ }
+ }
+ }
+
+ ras.traceOfs = 0;
+ ras.traceG += ras.traceIncr;
+
+ ras.gray_min_x = 32000;
+ ras.gray_max_x = -32000;
+ }
+ }
+
+
+ static
+ void Horizontal_Gray_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ /* nothing, really */
+ UNUSED( raster );
+ UNUSED( y );
+ UNUSED( x1 );
+ UNUSED( x2 );
+ UNUSED( left );
+ UNUSED( right );
+ }
+
+
+ static
+ void Horizontal_Gray_Sweep_Drop( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ PByte pixel;
+ Byte color;
+
+
+ /* During the horizontal sweep, we only take care of drop-outs */
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 > e2 )
+ {
+ if ( e1 == e2 + ras.precision )
+ {
+ switch ( ras.dropOutControl )
+ {
+ case 1:
+ e1 = e2;
+ break;
+
+ case 4:
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+ break;
+
+ case 2:
+ case 5:
+
+ /* Drop-out Control Rule #4 */
+
+ /* The spec is not very clear regarding rule #4. It */
+ /* presents a method that is way too costly to implement */
+ /* while the general idea seems to get rid of `stubs'. */
+ /* */
+
+ /* rightmost stub test */
+ if ( left->next == right && left->height <= 0 )
+ return;
+
+ /* leftmost stub test */
+ if ( right->next == left && left->start == y )
+ return;
+
+ if ( ras.dropOutControl == 2 )
+ e1 = e2;
+ else
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+
+ break;
+
+ default:
+ return; /* unsupported mode */
+ }
+ }
+ else
+ return;
+ }
+
+ if ( e1 >= 0 )
+ {
+ if ( x2 - x1 >= ras.precision_half )
+ color = ras.grays[2];
+ else
+ color = ras.grays[1];
+
+ e1 = TRUNC( e1 ) / 2;
+ if ( e1 < ras.target.rows )
+ {
+ pixel = ras.gTarget - e1 * ras.target.pitch + y / 2;
+ if ( ras.target.pitch > 0 )
+ pixel += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ if ( pixel[0] == ras.grays[0] )
+ pixel[0] = color;
+ }
+ }
+ }
+
+
+#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
+
+
+ /*************************************************************************/
+ /* */
+ /* Generic Sweep Drawing routine */
+ /* */
+ /*************************************************************************/
+
+ static
+ Bool Draw_Sweep( RAS_ARG )
+ {
+ Short y, y_change, y_height;
+
+ PProfile P, Q, P_Left, P_Right;
+
+ Short min_Y, max_Y, top, bottom, dropouts;
+
+ Long x1, x2, xs, e1, e2;
+
+ TProfileList wait;
+ TProfileList draw_left, draw_right;
+
+
+ /* Init empty linked lists */
+
+ Init_Linked( &wait );
+
+ Init_Linked( &draw_left );
+ Init_Linked( &draw_right );
+
+ /* first, compute min and max Y */
+
+ P = ras.fProfile;
+ max_Y = (short)TRUNC( ras.minY );
+ min_Y = (short)TRUNC( ras.maxY );
+
+ while ( P )
+ {
+ Q = P->link;
+
+ bottom = (Short)P->start;
+ top = (Short)P->start + P->height - 1;
+
+ if ( min_Y > bottom ) min_Y = bottom;
+ if ( max_Y < top ) max_Y = top;
+
+ P->X = 0;
+ InsNew( &wait, P );
+
+ P = Q;
+ }
+
+ /* Check the Y-turns */
+ if ( ras.numTurns == 0 )
+ {
+ ras.error = Raster_Err_Invalid;
+ return FAILURE;
+ }
+
+ /* Now inits the sweep */
+
+ ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y );
+
+ /* Then compute the distance of each profile from min_Y */
+
+ P = wait;
+
+ while ( P )
+ {
+ P->countL = P->start - min_Y;
+ P = P->link;
+ }
+
+ /* Let's go */
+
+ y = min_Y;
+ y_height = 0;
+
+ if ( ras.numTurns > 0 &&
+ ras.sizeBuff[-ras.numTurns] == min_Y )
+ ras.numTurns--;
+
+ while ( ras.numTurns > 0 )
+ {
+ /* look in the wait list for new activations */
+
+ P = wait;
+
+ while ( P )
+ {
+ Q = P->link;
+ P->countL -= y_height;
+ if ( P->countL == 0 )
+ {
+ DelOld( &wait, P );
+
+ switch ( P->flow )
+ {
+ case Flow_Up:
+ InsNew( &draw_left, P );
+ break;
+
+ case Flow_Down:
+ InsNew( &draw_right, P );
+ break;
+ }
+ }
+
+ P = Q;
+ }
+
+ /* Sort the drawing lists */
+
+ Sort( &draw_left );
+ Sort( &draw_right );
+
+ y_change = (Short)ras.sizeBuff[-ras.numTurns--];
+ y_height = y_change - y;
+
+ while ( y < y_change )
+ {
+ /* Let's trace */
+
+ dropouts = 0;
+
+ P_Left = draw_left;
+ P_Right = draw_right;
+
+ while ( P_Left )
+ {
+ x1 = P_Left ->X;
+ x2 = P_Right->X;
+
+ if ( x1 > x2 )
+ {
+ xs = x1;
+ x1 = x2;
+ x2 = xs;
+ }
+
+ if ( x2 - x1 <= ras.precision )
+ {
+ e1 = FLOOR( x1 );
+ e2 = CEILING( x2 );
+
+ if ( ras.dropOutControl != 0 &&
+ ( e1 > e2 || e2 == e1 + ras.precision ) )
+ {
+ /* a drop out was detected */
+
+ P_Left ->X = x1;
+ P_Right->X = x2;
+
+ /* mark profile for drop-out processing */
+ P_Left->countL = 1;
+ dropouts++;
+
+ goto Skip_To_Next;
+ }
+ }
+
+ ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
+
+ Skip_To_Next:
+
+ P_Left = P_Left->link;
+ P_Right = P_Right->link;
+ }
+
+ /* now perform the dropouts _after_ the span drawing */
+ /* drop-outs processing has been moved out of the loop */
+ /* for performance tuning */
+ if ( dropouts > 0 )
+ goto Scan_DropOuts;
+
+ Next_Line:
+
+ ras.Proc_Sweep_Step( RAS_VAR );
+
+ y++;
+
+ if ( y < y_change )
+ {
+ Sort( &draw_left );
+ Sort( &draw_right );
+ }
+ }
+
+ /* Now finalize the profiles that needs it */
+
+ {
+ PProfile Q, P;
+
+
+ P = draw_left;
+ while ( P )
+ {
+ Q = P->link;
+ if ( P->height == 0 )
+ DelOld( &draw_left, P );
+ P = Q;
+ }
+ }
+
+ {
+ PProfile Q, P = draw_right;
+
+
+ while ( P )
+ {
+ Q = P->link;
+ if ( P->height == 0 )
+ DelOld( &draw_right, P );
+ P = Q;
+ }
+ }
+ }
+
+ /* for gray-scaling, flushes the bitmap scanline cache */
+ while ( y <= max_Y )
+ {
+ ras.Proc_Sweep_Step( RAS_VAR );
+ y++;
+ }
+
+ return SUCCESS;
+
+ Scan_DropOuts:
+
+ P_Left = draw_left;
+ P_Right = draw_right;
+
+ while ( P_Left )
+ {
+ if ( P_Left->countL )
+ {
+ P_Left->countL = 0;
+#if 0
+ dropouts--; /* -- this is useful when debugging only */
+#endif
+ ras.Proc_Sweep_Drop( RAS_VARS y,
+ P_Left->X,
+ P_Right->X,
+ P_Left,
+ P_Right );
+ }
+
+ P_Left = P_Left->link;
+ P_Right = P_Right->link;
+ }
+
+ goto Next_Line;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Render_Single_Pass */
+ /* */
+ /* <Description> */
+ /* Performs one sweep with sub-banding. */
+ /* */
+ /* <Input> */
+ /* flipped :: If set, flip the direction of the outline. */
+ /* */
+ /* <Return> */
+ /* Renderer error code. */
+ /* */
+ static
+ int Render_Single_Pass( RAS_ARGS Bool flipped )
+ {
+ Short i, j, k;
+
+
+ while ( ras.band_top >= 0 )
+ {
+ ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision;
+ ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision;
+
+ ras.top = ras.buff;
+
+ ras.error = Raster_Err_None;
+
+ if ( Convert_Glyph( RAS_VARS flipped ) )
+ {
+ if ( ras.error != Raster_Err_Overflow )
+ return FAILURE;
+
+ ras.error = Raster_Err_None;
+
+ /* sub-banding */
+
+#ifdef DEBUG_RASTER
+ ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) );
+#endif
+
+ i = ras.band_stack[ras.band_top].y_min;
+ j = ras.band_stack[ras.band_top].y_max;
+
+ k = ( i + j ) / 2;
+
+ if ( ras.band_top >= 7 || k < i )
+ {
+ ras.band_top = 0;
+ ras.error = Raster_Err_Invalid;
+
+ return ras.error;
+ }
+
+ ras.band_stack[ras.band_top + 1].y_min = k;
+ ras.band_stack[ras.band_top + 1].y_max = j;
+
+ ras.band_stack[ras.band_top].y_max = k - 1;
+
+ ras.band_top++;
+ }
+ else
+ {
+ if ( ras.fProfile )
+ if ( Draw_Sweep( RAS_VAR ) )
+ return ras.error;
+ ras.band_top--;
+ }
+ }
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Render_Glyph */
+ /* */
+ /* <Description> */
+ /* Renders a glyph in a bitmap. Sub-banding if needed. */
+ /* */
+ /* <Return> */
+ /* FreeType error code. 0 means success. */
+ /* */
+ /* XXX Fixme: ftraster's error codes don't harmonize with FT2's ones! */
+ /* */
+ LOCAL_FUNC
+ FT_Error Render_Glyph( RAS_ARG )
+ {
+ FT_Error error;
+
+
+ Set_High_Precision( RAS_VARS ras.outline.flags &
+ ft_outline_high_precision );
+ ras.scale_shift = ras.precision_shift;
+ ras.dropOutControl = 2;
+ ras.second_pass = !( ras.outline.flags & ft_outline_single_pass );
+
+ /* Vertical Sweep */
+ ras.Proc_Sweep_Init = Vertical_Sweep_Init;
+ ras.Proc_Sweep_Span = Vertical_Sweep_Span;
+ ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
+ ras.Proc_Sweep_Step = Vertical_Sweep_Step;
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = ras.target.rows - 1;
+
+ ras.bWidth = ras.target.width;
+ ras.bTarget = (Byte*)ras.target.buffer;
+
+ if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 )
+ return error;
+
+ /* Horizontal Sweep */
+ if ( ras.second_pass && ras.dropOutControl != 0 )
+ {
+ ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
+ ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
+ ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
+ ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = ras.target.width - 1;
+
+ if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 )
+ return error;
+ }
+
+ return FT_Err_Ok;
+ }
+
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Render_Gray_Glyph */
+ /* */
+ /* <Description> */
+ /* Renders a glyph with grayscaling. Sub-banding if needed. */
+ /* */
+ /* <Return> */
+ /* FreeType error code. 0 means success. */
+ /* */
+ LOCAL_FUNC
+ FT_Error Render_Gray_Glyph( RAS_ARG )
+ {
+ Long pixel_width;
+ FT_Error error;
+
+
+ Set_High_Precision( RAS_VARS ras.outline.flags &
+ ft_outline_high_precision );
+ ras.scale_shift = ras.precision_shift + 1;
+ ras.dropOutControl = 2;
+ ras.second_pass = !( ras.outline.flags & ft_outline_single_pass );
+
+
+ /* Vertical Sweep */
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = 2 * ras.target.rows - 1;
+
+ ras.bWidth = ras.gray_width;
+ pixel_width = 2 * ( ( ras.target.width + 3 ) >> 2 );
+
+ if ( ras.bWidth > pixel_width )
+ ras.bWidth = pixel_width;
+
+ ras.bWidth = ras.bWidth * 8;
+ ras.bTarget = (Byte*)ras.gray_lines;
+ ras.gTarget = (Byte*)ras.target.buffer;
+
+ ras.Proc_Sweep_Init = Vertical_Gray_Sweep_Init;
+ ras.Proc_Sweep_Span = Vertical_Sweep_Span;
+ ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
+ ras.Proc_Sweep_Step = Vertical_Gray_Sweep_Step;
+
+ error = Render_Single_Pass( RAS_VARS 0 );
+ if (error)
+ return error;
+
+ /* Horizontal Sweep */
+ if ( ras.second_pass && ras.dropOutControl != 0 )
+ {
+ ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
+ ras.Proc_Sweep_Span = Horizontal_Gray_Sweep_Span;
+ ras.Proc_Sweep_Drop = Horizontal_Gray_Sweep_Drop;
+ ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = ras.target.width * 2 - 1;
+
+ error = Render_Single_Pass( RAS_VARS 1 );
+ if (error)
+ return error;
+ }
+
+ return FT_Err_Ok;
+ }
+
+#else /* FT_RASTER_OPTION_ANTI_ALIASING */
+
+ LOCAL_FUNC
+ FT_Error Render_Gray_Glyph( RAS_ARG )
+ {
+ UNUSED_RASTER;
+ return FT_Err_Cannot_Render_Glyph;
+ }
+
+#endif
+
+
+ static
+ void ft_black_init( TRaster_Instance* raster )
+ {
+ FT_UInt n;
+ FT_ULong c;
+
+ /* setup count table */
+ for ( n = 0; n < 256; n++ )
+ {
+ c = ( n & 0x55 ) + ( ( n & 0xAA ) >> 1 );
+
+ c = ( ( c << 6 ) & 0x3000 ) |
+ ( ( c << 4 ) & 0x0300 ) |
+ ( ( c << 2 ) & 0x0030 ) |
+ (c & 0x0003 );
+
+ raster->count_table[n] = c;
+ }
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+ /* set default 5-levels gray palette */
+ for ( n = 0; n < 5; n++ )
+ raster->grays[n] = n * 255 / 4;
+
+ raster->gray_width = RASTER_GRAY_LINES / 2;
+#endif
+ }
+
+ /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
+ /**** a static object. *****/
+
+#ifdef _STANDALONE_
+
+
+ static
+ int ft_black_new( void* memory,
+ FT_Raster *araster )
+ {
+ static FT_RasterRec_ the_raster;
+
+
+ *araster = &the_raster;
+ memset( &the_raster, sizeof ( the_raster ), 0 );
+ ft_black_init( &the_raster );
+
+ return 0;
+ }
+
+
+ static
+ void ft_black_done( FT_Raster raster )
+ {
+ /* nothing */
+ raster->init = 0;
+ }
+
+
+#else /* _STANDALONE_ */
+
+
+ static
+ int ft_black_new( FT_Memory memory,
+ TRaster_Instance** araster )
+ {
+ FT_Error error;
+ TRaster_Instance* raster;
+
+
+ *araster = 0;
+ if ( !ALLOC( raster, sizeof ( *raster ) ) )
+ {
+ raster->memory = memory;
+ ft_black_init( raster );
+
+ *araster = raster;
+ }
+
+ return error;
+ }
+
+
+ static
+ void ft_black_done( TRaster_Instance* raster )
+ {
+ FT_Memory memory = (FT_Memory)raster->memory;
+ FREE( raster );
+ }
+
+
+#endif /* _STANDALONE_ */
+
+
+ static
+ void ft_black_reset( TRaster_Instance* raster,
+ const char* pool_base,
+ long pool_size )
+ {
+ if ( raster && pool_base && pool_size >= 4096 )
+ {
+ /* save the pool */
+ raster->buff = (PLong)pool_base;
+ raster->sizeBuff = raster->buff + pool_size / sizeof ( Long );
+ }
+ }
+
+
+ static
+ void ft_black_set_mode( TRaster_Instance* raster,
+ unsigned long mode,
+ const char* palette )
+ {
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+ if ( mode == FT_MAKE_TAG( 'p', 'a', 'l', '5' ) )
+ {
+ /* set 5-levels gray palette */
+ raster->grays[0] = palette[0];
+ raster->grays[1] = palette[1];
+ raster->grays[2] = palette[2];
+ raster->grays[3] = palette[3];
+ raster->grays[4] = palette[4];
+ }
+#else
+ UNUSED(raster);
+ UNUSED(mode);
+ UNUSED(palette);
+#endif
+ }
+
+
+ static
+ int ft_black_render( TRaster_Instance* raster,
+ FT_Raster_Params* params )
+ {
+ FT_Outline* outline = (FT_Outline*)params->source;
+ FT_Bitmap* target_map = params->target;
+
+
+ if ( !raster || !raster->buff || !raster->sizeBuff )
+ return Raster_Err_Not_Ini;
+
+ if ( !outline || !outline->contours || !outline->points )
+ return Raster_Err_Invalid;
+
+ /* return immediately if the outline is empty */
+ if ( outline->n_points == 0 || outline->n_contours <= 0 )
+ return Raster_Err_None;
+
+ if ( outline->n_points != outline->contours[outline->n_contours - 1] + 1 )
+ return Raster_Err_Invalid;
+
+ if ( !target_map || !target_map->buffer )
+ return Raster_Err_Invalid;
+
+ /* this version of the raster does not support direct rendering, sorry */
+ if ( params->flags & ft_raster_flag_direct )
+ return Raster_Err_Unsupported;
+
+ ras.outline = *outline;
+ ras.target = *target_map;
+
+ return ( params->flags & ft_raster_flag_aa
+ ? Render_Gray_Glyph( raster )
+ : Render_Glyph( raster ) );
+ }
+
+
+ FT_Raster_Funcs ft_standard_raster =
+ {
+ ft_glyph_format_outline,
+ (FT_Raster_New_Func) ft_black_new,
+ (FT_Raster_Reset_Func) ft_black_reset,
+ (FT_Raster_Set_Mode_Func)ft_black_set_mode,
+ (FT_Raster_Render_Func) ft_black_render,
+ (FT_Raster_Done_Func) ft_black_done
+ };
+
+
+/* END */
--- /dev/null
+++ b/src/raster1/ftraster.h
@@ -1,0 +1,48 @@
+/***************************************************************************/
+/* */
+/* ftraster.h */
+/* */
+/* The FreeType glyph rasterizer (specification). */
+/* */
+/* Copyright 1996-2000 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used */
+/* modified and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+
+#ifndef FTRASTER_H
+#define FTRASTER_H
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+#include <freetype/ftimage.h>
+
+ /*************************************************************************/
+ /* */
+ /* Uncomment the following line if you are using ftraster.c as a */
+ /* standalone module, fully independent of FreeType. */
+ /* */
+/* #define _STANDALONE_ */
+
+#ifndef FT_EXPORT_VAR
+#define FT_EXPORT_VAR(x) extern x
+#endif
+
+ FT_EXPORT_VAR(FT_Raster_Funcs) ft_standard_raster;
+
+#ifdef __cplusplus
+ }
+#endif
+
+#endif /* FTRASTER_H */
+
+
+/* END */
--- /dev/null
+++ b/src/raster1/ftrend1.c
@@ -1,0 +1,231 @@
+#include <freetype/internal/ftobjs.h>
+#include <raster1.h>
+#include <ftraster.h>
+
+ /* initialise renderer - init its raster */
+ static FT_Error ft_raster1_init( FT_Renderer render )
+ {
+ FT_Library library = FT_MODULE_LIBRARY(render);
+
+ render->clazz->raster_class->raster_reset( render->raster,
+ library->raster_pool, library->raster_pool_size );
+
+ return 0;
+ }
+
+
+
+ /* sets render-specific mode */
+ static FT_Error ft_raster1_set_mode( FT_Renderer render,
+ FT_ULong mode_tag,
+ FT_Pointer data )
+ {
+ /* we simply pass it to the raster */
+ return render->clazz->raster_class->raster_set_mode(
+ render->raster, mode_tag, data );
+ }
+
+ /* transform a given glyph image */
+ static FT_Error ft_raster1_transform( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_Matrix* matrix,
+ FT_Vector* delta )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ if (slot->format != render->glyph_format)
+ {
+ error = FT_Err_Invalid_Argument;
+ goto Exit;
+ }
+
+ if (matrix)
+ FT_Outline_Transform( &slot->outline, matrix );
+
+ if (delta)
+ FT_Outline_Translate( &slot->outline, delta->x, delta->y );
+
+ Exit:
+ return error;
+ }
+
+ /* return the glyph's control box */
+ static void ft_raster1_get_cbox( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_BBox *cbox )
+ {
+ MEM_Set( cbox, 0, sizeof(*cbox) );
+
+ if (slot->format == render->glyph_format)
+ FT_Outline_Get_CBox( &slot->outline, cbox );
+ }
+
+
+ /* convert a slot's glyph image into a bitmap */
+ static FT_Error ft_raster1_render( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_UInt mode,
+ FT_Vector* origin )
+ {
+ FT_Error error;
+ FT_Outline* outline;
+ FT_BBox cbox;
+ FT_UInt width, height, pitch;
+ FT_Bitmap* bitmap;
+ FT_Memory memory;
+
+ FT_Raster_Params params;
+
+ /* check glyph image format */
+ if (slot->format != render->glyph_format)
+ {
+ error = FT_Err_Invalid_Argument;
+ goto Exit;
+ }
+
+ /* check rendering mode */
+ if ( mode & ft_render_mode_antialias )
+ {
+ /* raster1 is only capable of producing monochrome bitmaps */
+ if (render->clazz == &ft_raster1_renderer_class)
+ return FT_Err_Cannot_Render_Glyph;
+ }
+ else
+ {
+ /* raster5 is only capable of producing 5-gray-levels bitmaps */
+ if (render->clazz == &ft_raster5_renderer_class)
+ return FT_Err_Cannot_Render_Glyph;
+ }
+
+ outline = &slot->outline;
+
+ /* translate the outline to the new origin if needed */
+ if (origin)
+ FT_Outline_Translate( outline, origin->x, origin->y );
+
+ /* compute the control box, and grid fit it */
+ FT_Outline_Get_CBox( outline, &cbox );
+
+ cbox.xMin &= -64;
+ cbox.yMin &= -64;
+ cbox.xMax = (cbox.xMax+63) & -64;
+ cbox.yMax = (cbox.yMax+63) & -64;
+
+ width = (cbox.xMax - cbox.xMin) >> 6;
+ height = (cbox.yMax - cbox.yMin) >> 6;
+ bitmap = &slot->bitmap;
+ memory = render->root.memory;
+
+ /* release old bitmap buffer */
+ if ((slot->flags & ft_glyph_own_bitmap))
+ {
+ FREE(bitmap->buffer);
+ slot->flags &= ~ft_glyph_own_bitmap;
+ }
+
+ /* allocate new one, depends on pixel format */
+ if ( mode & ft_render_mode_antialias )
+ {
+ /* we pad to 32 bits, only for backwards compatibility with FT 1.x */
+ pitch = (width+3) & -4;
+ bitmap->pixel_mode = ft_pixel_mode_grays;
+ bitmap->num_grays = 256;
+ }
+ else
+ {
+ pitch = (width+7) >> 3;
+ bitmap->pixel_mode = ft_pixel_mode_mono;
+ }
+
+ bitmap->width = width;
+ bitmap->rows = height;
+ bitmap->pitch = pitch;
+
+ if (ALLOC( bitmap->buffer, (FT_ULong)pitch * height ))
+ goto Exit;
+
+ slot->flags |= ft_glyph_own_bitmap;
+
+ /* translate outline to render it into the bitmap */
+ FT_Outline_Translate( outline, -cbox.xMin, -cbox.yMin );
+
+ /* set up parameters */
+ params.target = bitmap;
+ params.source = outline;
+ params.flags = 0;
+
+ if ( bitmap->pixel_mode == ft_pixel_mode_grays )
+ params.flags |= ft_raster_flag_aa;
+
+ /* render outline into the bitmap */
+ error = render->raster_render( render->raster, ¶ms );
+ if (error) goto Exit;
+
+ slot->format = ft_glyph_format_bitmap;
+ slot->bitmap_left = cbox.xMin >> 6;
+ slot->bitmap_top = cbox.yMax >> 6;
+
+ Exit:
+ return error;
+ }
+
+
+ const FT_Renderer_Class ft_raster1_renderer_class =
+ {
+ {
+ ft_module_renderer,
+ sizeof( FT_RendererRec ),
+
+ "raster1",
+ 0x10000,
+ 0x20000,
+
+ 0, /* module specific interface */
+
+ (FT_Module_Constructor) ft_raster1_init,
+ (FT_Module_Destructor) 0,
+ (FT_Module_Requester) 0
+ },
+
+ ft_glyph_format_outline,
+
+ (FTRenderer_render) ft_raster1_render,
+ (FTRenderer_transform) ft_raster1_transform,
+ (FTRenderer_getCBox) ft_raster1_get_cbox,
+ (FTRenderer_setMode) ft_raster1_set_mode,
+
+ (FT_Raster_Funcs*) &ft_standard_raster
+ };
+
+
+ /* this renderer is _NOT_ part of the default modules, you'll need */
+ /* to register it by hand in your application. It should only be */
+ /* used for backwards-compatibility with FT 1.x anyway.. */
+ const FT_Renderer_Class ft_raster5_renderer_class =
+ {
+ {
+ ft_module_renderer,
+ sizeof( FT_RendererRec ),
+
+ "raster5",
+ 0x10000,
+ 0x20000,
+
+ 0, /* module specific interface */
+
+ (FT_Module_Constructor) ft_raster1_init,
+ (FT_Module_Destructor) 0,
+ (FT_Module_Requester) 0
+ },
+
+ ft_glyph_format_outline,
+
+ (FTRenderer_render) ft_raster1_render,
+ (FTRenderer_transform) ft_raster1_transform,
+ (FTRenderer_getCBox) ft_raster1_get_cbox,
+ (FTRenderer_setMode) ft_raster1_set_mode,
+
+ (FT_Raster_Funcs*) &ft_standard_raster
+ };
+
+
--- /dev/null
+++ b/src/raster1/ftrend1.h
@@ -1,0 +1,14 @@
+#ifndef FTREND1_H
+#define FTREND1_H
+
+#include <freetype/ftrender.h>
+
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_raster1_renderer_class;
+
+ /* this renderer is _NOT_ part of the default modules, you'll need */
+ /* to register it by hand in your application. It should only be */
+ /* used for backwards-compatibility with FT 1.x anyway.. */
+ /* */
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_raster5_renderer_class;
+
+#endif /* FTREND1_H */
--- /dev/null
+++ b/src/raster1/module.mk
@@ -1,0 +1,7 @@
+make_module_list: add_raster1_module
+
+add_raster1_module:
+ $(OPEN_DRIVER)ft_raster1_renderer_class$(CLOSE_DRIVER)
+ $(ECHO_DRIVER)raster1 $(ECHO_DRIVER_DESC)monochrome bitmap renderer$(ECHO_DRIVER_DONE)
+
+# EOF
--- /dev/null
+++ b/src/raster1/raster1.c
@@ -1,0 +1,4 @@
+#define FT_MAKE_OPTION_SINGLE_OBJECT
+#include <ftraster.c>
+#include <ftrend1.c>
+
--- /dev/null
+++ b/src/raster1/raster1.h
@@ -1,0 +1,14 @@
+#ifndef RASTER1_H
+#define RASTER1_H
+
+#include <freetype/ftrender.h>
+
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_raster1_renderer_class;
+
+ /* this renderer is _NOT_ part of the default modules, you'll need */
+ /* to register it by hand in your application. It should only be */
+ /* used for backwards-compatibility with FT 1.x anyway.. */
+ /* */
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_raster5_renderer_class;
+
+#endif /* RASTER1_H */
--- /dev/null
+++ b/src/raster1/rules.mk
@@ -1,0 +1,74 @@
+#
+# FreeType 2 renderer module build rules
+#
+
+
+# Copyright 1996-2000 by
+# David Turner, Robert Wilhelm, and Werner Lemberg.
+#
+# This file is part of the FreeType project, and may only be used, modified,
+# and distributed under the terms of the FreeType project license,
+# LICENSE.TXT. By continuing to use, modify, or distribute this file you
+# indicate that you have read the license and understand and accept it
+# fully.
+
+
+# renderer driver directory
+#
+RAS1_DIR := $(SRC_)raster1
+RAS1_DIR_ := $(RAS1_DIR)$(SEP)
+
+
+# additional include flags used when compiling the driver
+#
+RAS1_INCLUDE := $(RAS1_DIR)
+
+# compilation flags for the driver
+#
+RAS1_CFLAGS := $(RAS1_INCLUDE:%=$I%)
+RAS1_COMPILE := $(FT_COMPILE) $(RAS1_CFLAGS)
+
+
+# RASTER1 driver sources (i.e., C files)
+#
+RAS1_DRV_SRC := $(RAS1_DIR_)ftraster.c \
+ $(RAS1_DIR_)ftrend1.c
+
+# RASTER1 driver headers
+#
+RAS1_DRV_H := $(RAS1_DRV_SRC:%c=%h)
+
+
+# RASTER1 driver object(s)
+#
+# RAS1_DRV_OBJ_M is used during `multi' builds.
+# RAS1_DRV_OBJ_S is used during `single' builds.
+#
+RAS1_DRV_OBJ_M := $(RAS1_DRV_SRC:$(RAS1_DIR_)%.c=$(OBJ_)%.$O)
+RAS1_DRV_OBJ_S := $(OBJ_)raster1.$O
+
+# RASTER1 driver source file for single build
+#
+RAS1_DRV_SRC_S := $(RAS1_DIR_)raster1.c
+
+
+# RASTER1 driver - single object
+#
+$(RAS1_DRV_OBJ_S): $(RAS1_DRV_SRC_S) $(RAS1_DRV_SRC) \
+ $(FREETYPE_H) $(RAS1_DRV_H)
+ $(RAS1_COMPILE) $T$@ $(RAS1_DRV_SRC_S)
+
+
+# RASTER1 driver - multiple objects
+#
+$(OBJ_)%.$O: $(RAS1_DIR_)%.c $(FREETYPE_H) $(RAS1_DRV_H)
+ $(RAS1_COMPILE) $T$@ $<
+
+
+# update main driver object lists
+#
+DRV_OBJS_S += $(RAS1_DRV_OBJ_S)
+DRV_OBJS_M += $(RAS1_DRV_OBJ_M)
+
+
+# EOF
--- /dev/null
+++ b/src/smooth/ftgrays.c
@@ -1,0 +1,1954 @@
+/***************************************************************************/
+/* */
+/* ftgrays.c */
+/* */
+/* A new `perfect' anti-aliasing renderer (body). */
+/* */
+/* Copyright 2000 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used, */
+/* modified, and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* This file can be compiled without the rest of the FreeType engine, */
+ /* by defining the _STANDALONE_ macro when compiling it. You also need */
+ /* to put the files `ftgrays.h' and `ftimage.h' into the current */
+ /* compilation directory. Typically, you could do something like */
+ /* */
+ /* - copy `src/base/ftgrays.c' to your current directory */
+ /* */
+ /* - copy `include/freetype/ftimage.h' and */
+ /* `include/freetype/ftgrays.h' to the same directory */
+ /* */
+ /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */
+ /* */
+ /* cc -c -D_STANDALONE_ ftgrays.c */
+ /* */
+ /* The renderer can be initialized with a call to */
+ /* `ft_grays_raster.grays_raster_new'; an anti-aliased bitmap can be */
+ /* generated with a call to `ft_grays_raster.grays_raster_render'. */
+ /* */
+ /* See the comments and documentation in the file `ftimage.h' for */
+ /* more details on how the raster works. */
+ /* */
+ /*************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* This is a new anti-aliasing scan-converter for FreeType 2. The */
+ /* algorithm used here is _very_ different from the one in the standard */
+ /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
+ /* coverage of the outline on each pixel cell. */
+ /* */
+ /* It is based on ideas that I initially found in Raph Levien's */
+ /* excellent LibArt graphics library (see http://www.levien.com/libart */
+ /* for more information, though the web pages do not tell anything */
+ /* about the renderer; you'll have to dive into the source code to */
+ /* understand how it works). */
+ /* */
+ /* Note, however, that this is a _very_ different implementation */
+ /* compared Raph's. Coverage information is stored in a very different */
+ /* way, and I don't use sorted vector paths. Also, it doesn't use */
+ /* floating point values. */
+ /* */
+ /* This renderer has the following advantages: */
+ /* */
+ /* - It doesn't need an intermediate bitmap. Instead, one can supply */
+ /* a callback function that will be called by the renderer to draw */
+ /* gray spans on any target surface. You can thus do direct */
+ /* composition on any kind of bitmap, provided that you give the */
+ /* renderer the right callback. */
+ /* */
+ /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
+ /* each pixel cell */
+ /* */
+ /* - It performs a single pass on the outline (the `standard' FT2 */
+ /* renderer makes two passes). */
+ /* */
+ /* - It can easily be modified to render to _any_ number of gray levels */
+ /* cheaply. */
+ /* */
+ /* - For small (< 20) pixel sizes, it is faster than the standard */
+ /* renderer. */
+ /* */
+ /*************************************************************************/
+
+
+#include <string.h> /* for memcpy() */
+
+
+ /*************************************************************************/
+ /* */
+ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
+ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
+ /* messages during execution. */
+ /* */
+#undef FT_COMPONENT
+#define FT_COMPONENT trace_aaraster
+
+
+#define ErrRaster_Invalid_Outline -1
+
+#ifdef _STANDALONE_
+
+#define ErrRaster_Invalid_Mode -2
+
+#include "ftimage.h"
+#include "ftgrays.h"
+
+ /* This macro is used to indicate that a function parameter is unused. */
+ /* Its purpose is simply to reduce compiler warnings. Note also that */
+ /* simply defining it as `(void)x' doesn't avoid warnings with certain */
+ /* ANSI compilers (e.g. LCC). */
+#define UNUSED( x ) (x) = (x)
+
+ /* Disable the tracing mechanism for simplicity -- developers can */
+ /* activate it easily by redefining these two macros. */
+#ifndef FT_ERROR
+#define FT_ERROR( x ) do ; while ( 0 ) /* nothing */
+#endif
+
+#ifndef FT_TRACE
+#define FT_TRACE( x ) do ; while ( 0 ) /* nothing */
+#endif
+
+
+#else /* _STANDALONE_ */
+
+
+#include "ftgrays.h"
+#include <freetype/internal/ftobjs.h> /* for UNUSED() */
+#include <freetype/internal/ftdebug.h> /* for FT_TRACE() and FT_ERROR() */
+#include <freetype/freetype.h> /* for FT_Outline_Decompose() */
+
+#define ErrRaster_Invalid_Mode FT_Err_Cannot_Render_Glyph
+
+
+#endif /* _STANDALONE_ */
+
+
+ /* define this to dump debugging information */
+#define xxxDEBUG_GRAYS
+
+ /* as usual, for the speed hungry :-) */
+
+#ifndef FT_STATIC_RASTER
+
+
+#define RAS_ARG PRaster raster
+#define RAS_ARG_ PRaster raster,
+
+#define RAS_VAR raster
+#define RAS_VAR_ raster,
+
+#define ras (*raster)
+
+
+#else /* FT_STATIC_RASTER */
+
+
+#define RAS_ARG /* empty */
+#define RAS_ARG_ /* empty */
+#define RAS_VAR /* empty */
+#define RAS_VAR_ /* empty */
+
+ static TRaster ras;
+
+
+#endif /* FT_STATIC_RASTER */
+
+
+ /* must be at least 6 bits! */
+#define PIXEL_BITS 8
+
+#define ONE_PIXEL ( 1L << PIXEL_BITS )
+#define PIXEL_MASK ( -1L << PIXEL_BITS )
+#define TRUNC( x ) ( (x) >> PIXEL_BITS )
+#define SUBPIXELS( x ) ( (x) << PIXEL_BITS )
+#define FLOOR( x ) ( (x) & -ONE_PIXEL )
+#define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
+#define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
+
+#if PIXEL_BITS >= 6
+#define UPSCALE( x ) ( (x) << ( PIXEL_BITS - 6 ) )
+#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
+#else
+#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
+#define DOWNSCALE( x ) ( (x) << ( 6 - PIXEL_BITS ) )
+#endif
+
+ /* Define this if you want to use a more compact storage scheme. This */
+ /* increases the number of cells available in the render pool but slows */
+ /* down the rendering a bit. It is useful if you have a really tiny */
+ /* render pool. */
+#define xxxGRAYS_COMPACT
+
+
+ /*************************************************************************/
+ /* */
+ /* TYPE DEFINITIONS */
+ /* */
+ typedef int TScan; /* integer scanline/pixel coordinate */
+ typedef long TPos; /* sub-pixel coordinate */
+
+ /* maximal number of gray spans in a call to the span callback */
+#define FT_MAX_GRAY_SPANS 32
+
+
+#ifdef GRAYS_COMPACT
+
+ typedef struct TCell_
+ {
+ short x : 14;
+ short y : 14;
+ int cover : PIXEL_BITS + 2;
+ int area : PIXEL_BITS * 2 + 2;
+
+ } TCell, *PCell;
+
+#else /* GRAYS_COMPACT */
+
+ typedef struct TCell_
+ {
+ TScan x;
+ TScan y;
+ int cover;
+ int area;
+
+ } TCell, *PCell;
+
+#endif /* GRAYS_COMPACT */
+
+
+ typedef struct TRaster_
+ {
+ PCell cells;
+ int max_cells;
+ int num_cells;
+
+ TScan min_ex, max_ex;
+ TScan min_ey, max_ey;
+
+ int area;
+ int cover;
+ int invalid;
+
+ TScan ex, ey;
+ TScan cx, cy;
+ TPos x, y;
+
+ TScan last_ey;
+
+ FT_Vector bez_stack[32 * 3];
+ int lev_stack[32];
+
+ FT_Outline outline;
+ FT_Bitmap target;
+
+ FT_Span gray_spans[FT_MAX_GRAY_SPANS];
+ int num_gray_spans;
+
+ FT_Raster_Span_Func render_span;
+ void* render_span_data;
+ int span_y;
+
+ int band_size;
+ int band_shoot;
+ int conic_level;
+ int cubic_level;
+
+ void* memory;
+
+ } TRaster, *PRaster;
+
+
+ /*************************************************************************/
+ /* */
+ /* Initialize the cells table. */
+ /* */
+ static
+ void init_cells( RAS_ARG_ void* buffer,
+ long byte_size )
+ {
+ ras.cells = (PCell)buffer;
+ ras.max_cells = byte_size / sizeof ( TCell );
+ ras.num_cells = 0;
+ ras.area = 0;
+ ras.cover = 0;
+ ras.invalid = 1;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Compute the outline bounding box. */
+ /* */
+ static
+ void compute_cbox( RAS_ARG_ FT_Outline* outline )
+ {
+ FT_Vector* vec = outline->points;
+ FT_Vector* limit = vec + outline->n_points;
+
+
+ if ( outline->n_points <= 0 )
+ {
+ ras.min_ex = ras.max_ex = 0;
+ ras.min_ey = ras.max_ey = 0;
+ return;
+ }
+
+ ras.min_ex = ras.max_ex = vec->x;
+ ras.min_ey = ras.max_ey = vec->y;
+
+ vec++;
+
+ for ( ; vec < limit; vec++ )
+ {
+ TPos x = vec->x;
+ TPos y = vec->y;
+
+
+ if ( x < ras.min_ex ) ras.min_ex = x;
+ if ( x > ras.max_ex ) ras.max_ex = x;
+ if ( y < ras.min_ey ) ras.min_ey = y;
+ if ( y > ras.max_ey ) ras.max_ey = y;
+ }
+
+ /* truncate the bounding box to integer pixels */
+ ras.min_ex = ras.min_ex >> 6;
+ ras.min_ey = ras.min_ey >> 6;
+ ras.max_ex = ( ras.max_ex + 63 ) >> 6;
+ ras.max_ey = ( ras.max_ey + 63 ) >> 6;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Record the current cell in the table. */
+ /* */
+ static
+ int record_cell( RAS_ARG )
+ {
+ PCell cell;
+
+
+ if ( !ras.invalid && ( ras.area | ras.cover ) )
+ {
+ if ( ras.num_cells >= ras.max_cells )
+ return 1;
+
+ cell = ras.cells + ras.num_cells++;
+ cell->x = ras.ex - ras.min_ex;
+ cell->y = ras.ey - ras.min_ey;
+ cell->area = ras.area;
+ cell->cover = ras.cover;
+ }
+
+ return 0;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Set the current cell to a new position. */
+ /* */
+ static
+ int set_cell( RAS_ARG_ TScan ex,
+ TScan ey )
+ {
+ int invalid, record, clean;
+
+
+ /* Move the cell pointer to a new position. We set the `invalid' */
+ /* flag to indicate that the cell isn't part of those we're interested */
+ /* in during the render phase. This means that: */
+ /* */
+ /* . the new vertical position must be within min_ey..max_ey - 1. */
+ /* . the new horizontal position must be strictly less than max_ex */
+ /* */
+ /* Note that if a cell is to the left of the clipping region, it is */
+ /* actually set to the (min_ex-1) horizontal position. */
+
+ record = 0;
+ clean = 1;
+
+ invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex );
+ if ( !invalid )
+ {
+ /* All cells that are on the left of the clipping region go to the */
+ /* min_ex - 1 horizontal position. */
+ if ( ex < ras.min_ex )
+ ex = ras.min_ex - 1;
+
+ /* if our position is new, then record the previous cell */
+ if ( ex != ras.ex || ey != ras.ey )
+ record = 1;
+ else
+ clean = ras.invalid; /* do not clean if we didn't move from */
+ /* a valid cell */
+ }
+
+ /* record the previous cell if needed (i.e., if we changed the cell */
+ /* position, of changed the `invalid' flag) */
+ if ( ( ras.invalid != invalid || record ) && record_cell( RAS_VAR ) )
+ return 1;
+
+ if ( clean )
+ {
+ ras.area = 0;
+ ras.cover = 0;
+ }
+
+ ras.invalid = invalid;
+ ras.ex = ex;
+ ras.ey = ey;
+ return 0;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Start a new contour at a given cell. */
+ /* */
+ static
+ void start_cell( RAS_ARG_ TScan ex,
+ TScan ey )
+ {
+ if ( ex < ras.min_ex )
+ ex = ras.min_ex - 1;
+
+ ras.area = 0;
+ ras.cover = 0;
+ ras.ex = ex;
+ ras.ey = ey;
+ ras.last_ey = SUBPIXELS( ey );
+ ras.invalid = 0;
+
+ (void)set_cell( RAS_VAR_ ex, ey );
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Render a scanline as one or more cells. */
+ /* */
+ static
+ int render_scanline( RAS_ARG_ TScan ey,
+ TPos x1,
+ TScan y1,
+ TPos x2,
+ TScan y2 )
+ {
+ TScan ex1, ex2, fx1, fx2, delta;
+ long p, first, dx;
+ int incr, lift, mod, rem;
+
+
+ dx = x2 - x1;
+
+ ex1 = TRUNC( x1 ); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */
+ ex2 = TRUNC( x2 ); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */
+ fx1 = x1 - SUBPIXELS( ex1 );
+ fx2 = x2 - SUBPIXELS( ex2 );
+
+ /* trivial case. Happens often */
+ if ( y1 == y2 )
+ return set_cell( RAS_VAR_ ex2, ey );
+
+ /* everything is located in a single cell. That is easy! */
+ /* */
+ if ( ex1 == ex2 )
+ {
+ delta = y2 - y1;
+ ras.area += ( fx1 + fx2 ) * delta;
+ ras.cover += delta;
+ return 0;
+ }
+
+ /* ok, we'll have to render a run of adjacent cells on the same */
+ /* scanline... */
+ /* */
+ p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
+ first = ONE_PIXEL;
+ incr = 1;
+
+ if ( dx < 0 )
+ {
+ p = fx1 * ( y2 - y1 );
+ first = 0;
+ incr = -1;
+ dx = -dx;
+ }
+
+ delta = p / dx;
+ mod = p % dx;
+ if ( mod < 0 )
+ {
+ delta--;
+ mod += dx;
+ }
+
+ ras.area += ( fx1 + first ) * delta;
+ ras.cover += delta;
+
+ ex1 += incr;
+ if ( set_cell( RAS_VAR_ ex1, ey ) )
+ goto Error;
+ y1 += delta;
+
+ if ( ex1 != ex2 )
+ {
+ p = ONE_PIXEL * ( y2 - y1 );
+ lift = p / dx;
+ rem = p % dx;
+ if ( rem < 0 )
+ {
+ lift--;
+ rem += dx;
+ }
+
+ mod -= dx;
+
+ while ( ex1 != ex2 )
+ {
+ delta = lift;
+ mod += rem;
+ if ( mod >= 0 )
+ {
+ mod -= dx;
+ delta++;
+ }
+
+ ras.area += ONE_PIXEL * delta;
+ ras.cover += delta;
+ y1 += delta;
+ ex1 += incr;
+ if ( set_cell( RAS_VAR_ ex1, ey ) )
+ goto Error;
+ }
+ }
+
+ delta = y2 - y1;
+ ras.area += ( fx2 + ONE_PIXEL - first ) * delta;
+ ras.cover += delta;
+
+ return 0;
+
+ Error:
+ return 1;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Render a given line as a series of scanlines. */
+ /* */
+ static
+ int render_line( RAS_ARG_ TPos to_x,
+ TPos to_y )
+ {
+ TScan ey1, ey2, fy1, fy2;
+ TPos dx, dy, x, x2;
+ int p, rem, mod, lift, delta, first, incr;
+
+
+ ey1 = TRUNC( ras.last_ey );
+ ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
+ fy1 = ras.y - ras.last_ey;
+ fy2 = to_y - SUBPIXELS( ey2 );
+
+ dx = to_x - ras.x;
+ dy = to_y - ras.y;
+
+ /* we should do something about the trivial case where dx == 0, */
+ /* as it happens very often! XXXXX */
+
+ /* perform vertical clipping */
+ {
+ TScan min, max;
+
+
+ min = ey1;
+ max = ey2;
+ if ( ey1 > ey2 )
+ {
+ min = ey2;
+ max = ey1;
+ }
+ if ( min >= ras.max_ey || max < ras.min_ey )
+ goto End;
+ }
+
+ /* everything is on a single scanline */
+ if ( ey1 == ey2 )
+ {
+ if ( render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ) )
+ goto Error;
+ goto End;
+ }
+
+ /* ok, we'll have to render several scanlines */
+ p = ( ONE_PIXEL - fy1 ) * dx;
+ first = ONE_PIXEL;
+ incr = 1;
+
+ if ( dy < 0 )
+ {
+ p = fy1 * dx;
+ first = 0;
+ incr = -1;
+ dy = -dy;
+ }
+
+ delta = p / dy;
+ mod = p % dy;
+ if ( mod < 0 )
+ {
+ delta--;
+ mod += dy;
+ }
+
+ x = ras.x + delta;
+ if ( render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ) )
+ goto Error;
+
+ ey1 += incr;
+ if ( set_cell( RAS_VAR_ TRUNC( x ), ey1 ) )
+ goto Error;
+
+ if ( ey1 != ey2 )
+ {
+ p = ONE_PIXEL * dx;
+ lift = p / dy;
+ rem = p % dy;
+ if ( rem < 0 )
+ {
+ lift--;
+ rem += dy;
+ }
+ mod -= dy;
+
+ while ( ey1 != ey2 )
+ {
+ delta = lift;
+ mod += rem;
+ if ( mod >= 0 )
+ {
+ mod -= dy;
+ delta++;
+ }
+
+ x2 = x + delta;
+ if ( render_scanline( RAS_VAR_ ey1,
+ x, ONE_PIXEL - first, x2, first ) )
+ goto Error;
+ x = x2;
+ ey1 += incr;
+ if ( set_cell( RAS_VAR_ TRUNC( x ), ey1 ) )
+ goto Error;
+ }
+ }
+
+ if ( render_scanline( RAS_VAR_ ey1,
+ x, ONE_PIXEL - first, to_x, fy2 ) )
+ goto Error;
+
+ End:
+ ras.x = to_x;
+ ras.y = to_y;
+ ras.last_ey = SUBPIXELS( ey2 );
+
+ return 0;
+
+ Error:
+ return 1;
+ }
+
+
+ static
+ void split_conic( FT_Vector* base )
+ {
+ TPos a, b;
+
+
+ base[4].x = base[2].x;
+ b = base[1].x;
+ a = base[3].x = ( base[2].x + b ) / 2;
+ b = base[1].x = ( base[0].x + b ) / 2;
+ base[2].x = ( a + b ) / 2;
+
+ base[4].y = base[2].y;
+ b = base[1].y;
+ a = base[3].y = ( base[2].y + b ) / 2;
+ b = base[1].y = ( base[0].y + b ) / 2;
+ base[2].y = ( a + b ) / 2;
+ }
+
+
+ static
+ int render_conic( RAS_ARG_ FT_Vector* control,
+ FT_Vector* to )
+ {
+ TPos dx, dy;
+ int top, level;
+ int* levels;
+ FT_Vector* arc;
+
+
+ dx = DOWNSCALE( ras.x ) + to->x - ( control->x << 1 );
+ if ( dx < 0 )
+ dx = -dx;
+ dy = DOWNSCALE( ras.y ) + to->y - ( control->y << 1 );
+ if ( dy < 0 )
+ dy = -dy;
+ if ( dx < dy )
+ dx = dy;
+
+ level = 1;
+ dx = dx / ras.conic_level;
+ while ( dx > 0 )
+ {
+ dx >>= 1;
+ level++;
+ }
+
+ /* a shortcut to speed things up */
+ if ( level <= 1 )
+ {
+ /* we compute the mid-point directly in order to avoid */
+ /* calling split_conic() */
+ TPos to_x, to_y, mid_x, mid_y;
+
+
+ to_x = UPSCALE( to->x );
+ to_y = UPSCALE( to->y );
+ mid_x = ( ras.x + to_x + 2 * UPSCALE( control->x ) ) / 4;
+ mid_y = ( ras.y + to_y + 2 * UPSCALE( control->y ) ) / 4;
+
+ return render_line( RAS_VAR_ mid_x, mid_y ) ||
+ render_line( RAS_VAR_ to_x, to_y );
+ }
+
+ arc = ras.bez_stack;
+ levels = ras.lev_stack;
+ top = 0;
+ levels[0] = level;
+
+ arc[0].x = UPSCALE( to->x );
+ arc[0].y = UPSCALE( to->y );
+ arc[1].x = UPSCALE( control->x );
+ arc[1].y = UPSCALE( control->y );
+ arc[2].x = ras.x;
+ arc[2].y = ras.y;
+
+ while ( top >= 0 )
+ {
+ level = levels[top];
+ if ( level > 1 )
+ {
+ /* check that the arc crosses the current band */
+ TPos min, max, y;
+
+
+ min = max = arc[0].y;
+
+ y = arc[1].y;
+ if ( y < min ) min = y;
+ if ( y > max ) max = y;
+
+ y = arc[2].y;
+ if ( y < min ) min = y;
+ if ( y > max ) max = y;
+
+ if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
+ goto Draw;
+
+ split_conic( arc );
+ arc += 2;
+ top++;
+ levels[top] = levels[top - 1] = level - 1;
+ continue;
+ }
+
+ Draw:
+ {
+ TPos to_x, to_y, mid_x, mid_y;
+
+
+ to_x = arc[0].x;
+ to_y = arc[0].y;
+ mid_x = ( ras.x + to_x + 2 * arc[1].x ) / 4;
+ mid_y = ( ras.y + to_y + 2 * arc[1].y ) / 4;
+
+ if ( render_line( RAS_VAR_ mid_x, mid_y ) ||
+ render_line( RAS_VAR_ to_x, to_y ) )
+ return 1;
+
+ top--;
+ arc -= 2;
+ }
+ }
+ return 0;
+ }
+
+
+ static
+ void split_cubic( FT_Vector* base )
+ {
+ TPos a, b, c, d;
+
+
+ base[6].x = base[3].x;
+ c = base[1].x;
+ d = base[2].x;
+ base[1].x = a = ( base[0].x + c ) / 2;
+ base[5].x = b = ( base[3].x + d ) / 2;
+ c = ( c + d ) / 2;
+ base[2].x = a = ( a + c ) / 2;
+ base[4].x = b = ( b + c ) / 2;
+ base[3].x = ( a + b ) / 2;
+
+ base[6].y = base[3].y;
+ c = base[1].y;
+ d = base[2].y;
+ base[1].y = a = ( base[0].y + c ) / 2;
+ base[5].y = b = ( base[3].y + d ) / 2;
+ c = ( c + d ) / 2;
+ base[2].y = a = ( a + c ) / 2;
+ base[4].y = b = ( b + c ) / 2;
+ base[3].y = ( a + b ) / 2;
+ }
+
+
+ static
+ int render_cubic( RAS_ARG_ FT_Vector* control1,
+ FT_Vector* control2,
+ FT_Vector* to )
+ {
+ TPos dx, dy, da, db;
+ int top, level;
+ int* levels;
+ FT_Vector* arc;
+
+
+ dx = DOWNSCALE( ras.x ) + to->x - ( control1->x << 1 );
+ if ( dx < 0 )
+ dx = -dx;
+ dy = DOWNSCALE( ras.y ) + to->y - ( control1->y << 1 );
+ if ( dy < 0 )
+ dy = -dy;
+ if ( dx < dy )
+ dx = dy;
+ da = dx;
+
+ dx = DOWNSCALE( ras.x ) + to->x - 3 * ( control1->x + control2->x );
+ if ( dx < 0 )
+ dx = -dx;
+ dy = DOWNSCALE( ras.y ) + to->y - 3 * ( control1->x + control2->y );
+ if ( dy < 0 )
+ dy = -dy;
+ if ( dx < dy )
+ dx = dy;
+ db = dx;
+
+ level = 1;
+ da = da / ras.cubic_level;
+ db = db / ras.conic_level;
+ while ( da > 0 || db > 0 )
+ {
+ da >>= 1;
+ db >>= 2;
+ level++;
+ }
+
+ if ( level <= 1 )
+ {
+ TPos to_x, to_y, mid_x, mid_y;
+
+
+ to_x = UPSCALE( to->x );
+ to_y = UPSCALE( to->y );
+ mid_x = ( ras.x + to_x +
+ 3 * UPSCALE( control1->x + control2->x ) ) / 8;
+ mid_y = ( ras.y + to_y +
+ 3 * UPSCALE( control1->y + control2->y ) ) / 8;
+
+ return render_line( RAS_VAR_ mid_x, mid_y ) ||
+ render_line( RAS_VAR_ to_x, to_y );
+ }
+
+ arc = ras.bez_stack;
+ arc[0].x = UPSCALE( to->x );
+ arc[0].y = UPSCALE( to->y );
+ arc[1].x = UPSCALE( control2->x );
+ arc[1].y = UPSCALE( control2->y );
+ arc[2].x = UPSCALE( control1->x );
+ arc[2].y = UPSCALE( control1->y );
+ arc[3].x = ras.x;
+ arc[3].y = ras.y;
+
+ levels = ras.lev_stack;
+ top = 0;
+ levels[0] = level;
+
+ while ( top >= 0 )
+ {
+ level = levels[top];
+ if ( level > 1 )
+ {
+ /* check that the arc crosses the current band */
+ TPos min, max, y;
+
+
+ min = max = arc[0].y;
+ y = arc[1].y;
+ if ( y < min ) min = y;
+ if ( y > max ) max = y;
+ y = arc[2].y;
+ if ( y < min ) min = y;
+ if ( y > max ) max = y;
+ y = arc[3].y;
+ if ( y < min ) min = y;
+ if ( y > max ) max = y;
+ if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
+ goto Draw;
+ split_cubic( arc );
+ arc += 3;
+ top ++;
+ levels[top] = levels[top - 1] = level - 1;
+ continue;
+ }
+
+ Draw:
+ {
+ TPos to_x, to_y, mid_x, mid_y;
+
+
+ to_x = arc[0].x;
+ to_y = arc[0].y;
+ mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8;
+ mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8;
+
+ if ( render_line( RAS_VAR_ mid_x, mid_y ) ||
+ render_line( RAS_VAR_ to_x, to_y ) )
+ return 1;
+ top --;
+ arc -= 3;
+ }
+ }
+ return 0;
+ }
+
+
+ /* a macro comparing two cell pointers. Returns true if a <= b. */
+#if 1
+#define PACK( a ) ( ( (long)(a)->y << 16 ) + (a)->x )
+#define LESS_THAN( a, b ) ( PACK( a ) < PACK( b ) )
+#else /* 1 */
+#define LESS_THAN( a, b ) ( (a)->y < (b)->y || \
+ ( (a)->y == (b)->y && (a)->x < (b)->x ) )
+#endif /* 1 */
+
+#define SWAP_CELLS( a, b, temp ) do \
+ { \
+ temp = *(a); \
+ *(a) = *(b); \
+ *(b) = temp; \
+ } while ( 0 )
+#define DEBUG_SORT
+#define QUICK_SORT
+
+#ifdef SHELL_SORT
+
+ /* A simple shell sort algorithm that works directly on our */
+ /* cells table.. */
+ static
+ void shell_sort ( PCell cells,
+ int count )
+ {
+ PCell i, j, limit = cells + count;
+ TCell temp;
+ int gap;
+
+
+ /* compute initial gap */
+ for ( gap = 0; ++gap < count; gap *= 3 )
+ ;
+
+ while ( gap /= 3 )
+ {
+ for ( i = cells + gap; i < limit; i++ )
+ {
+ for ( j = i - gap; ; j -= gap )
+ {
+ PCell k = j + gap;
+
+
+ if ( LESS_THAN( j, k ) )
+ break;
+
+ SWAP_CELLS( j, k, temp );
+
+ if ( j < cells + gap )
+ break;
+ }
+ }
+ }
+ }
+
+#endif /* SHELL_SORT */
+
+
+#ifdef QUICK_SORT
+
+ /* This is a non-recursive quicksort that directly process our cells */
+ /* array. It should be faster than calling the stdlib qsort(), and we */
+ /* can even tailor our insertion threshold... */
+
+#define QSORT_THRESHOLD 9 /* below this size, a sub-array will be sorted */
+ /* through a normal insertion sort.. */
+
+ static
+ void quick_sort( PCell cells,
+ int count )
+ {
+ PCell stack[40]; /* should be enough ;-) */
+ PCell* top; /* top of stack */
+ PCell base, limit;
+ TCell temp;
+
+
+ limit = cells + count;
+ base = cells;
+ top = stack;
+
+ for (;;)
+ {
+ int len = limit - base;
+ PCell i, j, pivot;
+
+
+ if ( len > QSORT_THRESHOLD )
+ {
+ /* we use base + len/2 as the pivot */
+ pivot = base + len / 2;
+ SWAP_CELLS( base, pivot, temp );
+
+ i = base + 1;
+ j = limit - 1;
+
+ /* now ensure that *i <= *base <= *j */
+ if ( LESS_THAN( j, i ) )
+ SWAP_CELLS( i, j, temp );
+
+ if ( LESS_THAN( base, i ) )
+ SWAP_CELLS( base, i, temp );
+
+ if ( LESS_THAN( j, base ) )
+ SWAP_CELLS( base, j, temp );
+
+ for (;;)
+ {
+ do i++; while ( LESS_THAN( i, base ) );
+ do j--; while ( LESS_THAN( base, j ) );
+
+ if ( i > j )
+ break;
+
+ SWAP_CELLS( i, j, temp );
+ }
+
+ SWAP_CELLS( base, j, temp );
+
+ /* now, push the largest sub-array */
+ if ( j - base > limit - i )
+ {
+ top[0] = base;
+ top[1] = j;
+ base = i;
+ }
+ else
+ {
+ top[0] = i;
+ top[1] = limit;
+ limit = j;
+ }
+ top += 2;
+ }
+ else
+ {
+ /* the sub-array is small, perform insertion sort */
+ j = base;
+ i = j + 1;
+
+ for ( ; i < limit; j = i, i++ )
+ {
+ for ( ; LESS_THAN( j + 1, j ); j-- )
+ {
+ SWAP_CELLS( j + 1, j, temp );
+ if ( j == base )
+ break;
+ }
+ }
+ if ( top > stack )
+ {
+ top -= 2;
+ base = top[0];
+ limit = top[1];
+ }
+ else
+ break;
+ }
+ }
+ }
+
+#endif /* QUICK_SORT */
+
+
+#ifdef DEBUG_GRAYS
+#ifdef DEBUG_SORT
+
+ static
+ int check_sort( PCell cells,
+ int count )
+ {
+ PCell p, q;
+
+
+ for ( p = cells + count - 2; p >= cells; p-- )
+ {
+ q = p + 1;
+ if ( !LESS_THAN( p, q ) )
+ return 0;
+ }
+ return 1;
+ }
+
+#endif /* DEBUG_SORT */
+#endif /* DEBUG_GRAYS */
+
+
+ static
+ int Move_To( FT_Vector* to,
+ FT_Raster raster )
+ {
+ TPos x, y;
+
+
+ /* record current cell, if any */
+ record_cell( (PRaster)raster );
+
+ /* start to a new position */
+ x = UPSCALE( to->x );
+ y = UPSCALE( to->y );
+ start_cell( (PRaster)raster, TRUNC( x ), TRUNC( y ) );
+ ((PRaster)raster)->x = x;
+ ((PRaster)raster)->y = y;
+ return 0;
+ }
+
+
+ static
+ int Line_To( FT_Vector* to,
+ FT_Raster raster )
+ {
+ return render_line( (PRaster)raster,
+ UPSCALE( to->x ), UPSCALE( to->y ) );
+ }
+
+
+ static
+ int Conic_To( FT_Vector* control,
+ FT_Vector* to,
+ FT_Raster raster )
+ {
+ return render_conic( (PRaster)raster, control, to );
+ }
+
+
+ static
+ int Cubic_To( FT_Vector* control1,
+ FT_Vector* control2,
+ FT_Vector* to,
+ FT_Raster raster )
+ {
+ return render_cubic( (PRaster)raster, control1, control2, to );
+ }
+
+
+ static
+ void grays_render_span( int y,
+ int count,
+ FT_Span* spans,
+ PRaster raster )
+ {
+ unsigned char* p;
+ FT_Bitmap* map = &raster->target;
+
+
+ /* first of all, compute the scanline offset */
+ p = (unsigned char*)map->buffer - y * map->pitch;
+ if ( map->pitch >= 0 )
+ p += ( map->rows - 1 ) * map->pitch;
+
+ for ( ; count > 0; count--, spans++ )
+ {
+ if ( spans->coverage )
+#if 1
+ memset( p + spans->x, (unsigned char)spans->coverage, spans->len );
+#else /* 1 */
+ {
+ q = p + spans->x;
+ limit = q + spans->len;
+ for ( ; q < limit; q++ )
+ q[0] = (unsigned char)spans->coverage;
+ }
+#endif /* 1 */
+ }
+ }
+
+
+#ifdef DEBUG_GRAYS
+
+#include <stdio.h>
+
+ static
+ void dump_cells( RAS_ARG )
+ {
+ PCell cell, limit;
+ int y = -1;
+
+
+ cell = ras.cells;
+ limit = cell + ras.num_cells;
+
+ for ( ; cell < limit; cell++ )
+ {
+ if ( cell->y != y )
+ {
+ fprintf( stderr, "\n%2d: ", cell->y );
+ y = cell->y;
+ }
+ fprintf( stderr, "[%d %d %d]",
+ cell->x, cell->area, cell->cover );
+ }
+ fprintf(stderr, "\n" );
+ }
+
+#endif /* DEBUG_GRAYS */
+
+
+ static
+ void grays_hline( RAS_ARG_ TScan x,
+ TScan y,
+ TPos area,
+ int acount )
+ {
+ FT_Span* span;
+ int count;
+ int coverage;
+
+
+ /* compute the coverage line's coverage, depending on the */
+ /* outline fill rule */
+ /* */
+ /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
+ /* */
+ coverage = area >> ( PIXEL_BITS * 2 + 1 - 8); /* use range 0..256 */
+
+ if ( ras.outline.flags & ft_outline_even_odd_fill )
+ {
+ if ( coverage < 0 )
+ coverage = -coverage;
+
+ while ( coverage >= 512 )
+ coverage -= 512;
+
+ if ( coverage > 256 )
+ coverage = 512 - coverage;
+ else if ( coverage == 256 )
+ coverage = 255;
+ }
+ else
+ {
+ /* normal non-zero winding rule */
+ if ( coverage < 0 )
+ coverage = -coverage;
+
+ if ( coverage >= 256 )
+ coverage = 255;
+ }
+
+ y += ras.min_ey;
+ x += ras.min_ex;
+
+ if ( coverage )
+ {
+ /* see if we can add this span to the current list */
+ count = ras.num_gray_spans;
+ span = ras.gray_spans + count - 1;
+ if ( count > 0 &&
+ ras.span_y == y &&
+ (int)span->x + span->len == (int)x &&
+ span->coverage == coverage )
+ {
+ span->len += acount;
+ return;
+ }
+
+ if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
+ {
+ if ( ras.render_span )
+ ras.render_span( ras.span_y, count, ras.gray_spans,
+ ras.render_span_data );
+ /* ras.render_span( span->y, ras.gray_spans, count ); */
+
+#ifdef DEBUG_GRAYS
+
+ if ( ras.span_y >= 0 )
+ {
+ int n;
+
+
+ fprintf( stderr, "y=%3d ", ras.span_y );
+ span = ras.gray_spans;
+ for ( n = 0; n < count; n++, span++ )
+ fprintf( stderr, "[%d..%d]:%02x ",
+ span->x, span->x + span->len - 1, span->coverage );
+ fprintf( stderr, "\n" );
+ }
+
+#endif /* DEBUG_GRAYS */
+
+ ras.num_gray_spans = 0;
+ ras.span_y = y;
+
+ count = 0;
+ span = ras.gray_spans;
+ }
+ else
+ span++;
+
+ /* add a gray span to the current list */
+ span->x = (short)x;
+ span->len = (unsigned short)acount;
+ span->coverage = (unsigned char)coverage;
+ ras.num_gray_spans++;
+ }
+ }
+
+
+ static
+ void grays_sweep( RAS_ARG_ FT_Bitmap* target )
+ {
+ TScan x, y, cover, area;
+ PCell start, cur, limit;
+
+ UNUSED( target );
+
+
+ cur = ras.cells;
+ limit = cur + ras.num_cells;
+
+ cover = 0;
+ ras.span_y = -1;
+ ras.num_gray_spans = 0;
+
+ for (;;)
+ {
+ start = cur;
+ y = start->y;
+ x = start->x;
+
+ area = start->area;
+ cover += start->cover;
+
+ /* accumulate all start cells */
+ for (;;)
+ {
+ ++cur;
+ if ( cur >= limit || cur->y != start->y || cur->x != start->x )
+ break;
+
+ area += cur->area;
+ cover += cur->cover;
+ }
+
+ /* if the start cell has a non-null area, we must draw an */
+ /* individual gray pixel there */
+ if ( area && x >= 0 )
+ {
+ grays_hline( RAS_VAR_ x, y, cover * ( ONE_PIXEL * 2 ) - area, 1 );
+ x++;
+ }
+
+ if ( x < 0 )
+ x = 0;
+
+ if ( cur < limit && start->y == cur->y )
+ {
+ /* draw a gray span between the start cell and the current one */
+ if ( cur->x > x )
+ grays_hline( RAS_VAR_ x, y,
+ cover * ( ONE_PIXEL * 2 ), cur->x - x );
+ }
+ else
+ {
+ /* draw a gray span until the end of the clipping region */
+ if ( cover && x < ras.max_ex - ras.min_ex )
+ grays_hline( RAS_VAR_ x, y,
+ cover * ( ONE_PIXEL * 2 ),
+ ras.max_ex - x - ras.min_ex );
+ cover = 0;
+ }
+
+ if ( cur >= limit )
+ break;
+ }
+
+ if ( ras.render_span && ras.num_gray_spans > 0 )
+ ras.render_span( ras.span_y, ras.num_gray_spans,
+ ras.gray_spans, ras.render_span_data );
+
+#ifdef DEBUG_GRAYS
+
+ {
+ int n;
+ FT_Span* span;
+
+
+ fprintf( stderr, "y=%3d ", ras.span_y );
+ span = ras.gray_spans;
+ for ( n = 0; n < ras.num_gray_spans; n++, span++ )
+ fprintf( stderr, "[%d..%d]:%02x ",
+ span->x, span->x + span->len - 1, span->coverage );
+ fprintf( stderr, "\n" );
+ }
+
+#endif /* DEBUG_GRAYS */
+
+ }
+
+
+#ifdef _STANDALONE_
+
+ /*************************************************************************/
+ /* */
+ /* The following function should only compile in stand_alone mode, */
+ /* i.e., when building this component without the rest of FreeType. */
+ /* */
+ /*************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* FT_Outline_Decompose */
+ /* */
+ /* <Description> */
+ /* Walks over an outline's structure to decompose it into individual */
+ /* segments and Bezier arcs. This function is also able to emit */
+ /* `move to' and `close to' operations to indicate the start and end */
+ /* of new contours in the outline. */
+ /* */
+ /* <Input> */
+ /* outline :: A pointer to the source target. */
+ /* */
+ /* interface :: A table of `emitters', i.e,. function pointers called */
+ /* during decomposition to indicate path operations. */
+ /* */
+ /* user :: A typeless pointer which is passed to each emitter */
+ /* during the decomposition. It can be used to store */
+ /* the state during the decomposition. */
+ /* */
+ /* <Return> */
+ /* Error code. 0 means sucess. */
+ /* */
+ static
+ int FT_Outline_Decompose( FT_Outline* outline,
+ FT_Outline_Funcs* interface,
+ void* user )
+ {
+#undef SCALED
+#define SCALED( x ) ( ( (x) << shift ) - delta )
+
+ FT_Vector v_last;
+ FT_Vector v_control;
+ FT_Vector v_start;
+
+ FT_Vector* point;
+ FT_Vector* limit;
+ char* tags;
+
+ int n; /* index of contour in outline */
+ int first; /* index of first point in contour */
+ int error;
+ char tag; /* current point's state */
+
+ int shift = interface->shift;
+ FT_Pos delta = interface->delta;
+
+
+ first = 0;
+
+ for ( n = 0; n < outline->n_contours; n++ )
+ {
+ int last; /* index of last point in contour */
+
+
+ last = outline->contours[n];
+ limit = outline->points + last;
+
+ v_start = outline->points[first];
+ v_last = outline->points[last];
+
+ v_start.x = SCALED( v_start.x ); v_start.y = SCALED( v_start.y );
+ v_last.x = SCALED( v_last.x ); v_last.y = SCALED( v_last.y );
+
+ v_control = v_start;
+
+ point = outline->points + first;
+ tags = outline->tags + first;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ /* A contour cannot start with a cubic control point! */
+ if ( tag == FT_Curve_Tag_Cubic )
+ goto Invalid_Outline;
+
+ /* check first point to determine origin */
+ if ( tag == FT_Curve_Tag_Conic )
+ {
+ /* first point is conic control. Yes, this happens. */
+ if ( FT_CURVE_TAG( outline->tags[last] ) == FT_Curve_Tag_On )
+ {
+ /* start at last point if it is on the curve */
+ v_start = v_last;
+ limit--;
+ }
+ else
+ {
+ /* if both first and last points are conic, */
+ /* start at their middle and record its position */
+ /* for closure */
+ v_start.x = ( v_start.x + v_last.x ) / 2;
+ v_start.y = ( v_start.y + v_last.y ) / 2;
+
+ v_last = v_start;
+ }
+ point--;
+ tags--;
+ }
+
+ error = interface->move_to( &v_start, user );
+ if ( error )
+ goto Exit;
+
+ while ( point < limit )
+ {
+ point++;
+ tags++;
+
+ tag = FT_CURVE_TAG( tags[0] );
+ switch ( tag )
+ {
+ case FT_Curve_Tag_On: /* emit a single line_to */
+ {
+ FT_Vector vec;
+
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ error = interface->line_to( &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ case FT_Curve_Tag_Conic: /* consume conic arcs */
+ {
+ v_control.x = SCALED( point->x );
+ v_control.y = SCALED( point->y );
+
+ Do_Conic:
+ if ( point < limit )
+ {
+ FT_Vector vec;
+ FT_Vector v_middle;
+
+
+ point++;
+ tags++;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ if ( tag == FT_Curve_Tag_On )
+ {
+ error = interface->conic_to( &v_control, &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ if ( tag != FT_Curve_Tag_Conic )
+ goto Invalid_Outline;
+
+ v_middle.x = ( v_control.x + vec.x ) / 2;
+ v_middle.y = ( v_control.y + vec.y ) / 2;
+
+ error = interface->conic_to( &v_control, &v_middle, user );
+ if ( error )
+ goto Exit;
+
+ v_control = vec;
+ goto Do_Conic;
+ }
+
+ error = interface->conic_to( &v_control, &v_start, user );
+ goto Close;
+ }
+
+ default: /* FT_Curve_Tag_Cubic */
+ {
+ FT_Vector vec1, vec2;
+
+
+ if ( point + 1 > limit ||
+ FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic )
+ goto Invalid_Outline;
+
+ point += 2;
+ tags += 2;
+
+ vec1.x = SCALED( point[-2].x ); vec1.y = SCALED( point[-2].y );
+ vec2.x = SCALED( point[-1].x ); vec2.y = SCALED( point[-1].y );
+
+ if ( point <= limit )
+ {
+ FT_Vector vec;
+
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ error = interface->cubic_to( &vec1, &vec2, &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ error = interface->cubic_to( &vec1, &vec2, &v_start, user );
+ goto Close;
+ }
+ }
+ }
+
+ /* close the contour with a line segment */
+ error = interface->line_to( &v_start, user );
+
+ Close:
+ if ( error )
+ goto Exit;
+
+ first = last + 1;
+ }
+
+ return 0;
+
+ Exit:
+ return error;
+
+ Invalid_Outline:
+ return ErrRaster_Invalid_Outline;
+ }
+
+#endif /* _STANDALONE_ */
+
+
+ typedef struct TBand_
+ {
+ FT_Pos min, max;
+
+ } TBand;
+
+
+ static
+ int grays_convert_glyph( RAS_ARG_ FT_Outline* outline )
+ {
+ static
+ FT_Outline_Funcs interface =
+ {
+ (FT_Outline_MoveTo_Func)Move_To,
+ (FT_Outline_LineTo_Func)Line_To,
+ (FT_Outline_ConicTo_Func)Conic_To,
+ (FT_Outline_CubicTo_Func)Cubic_To,
+ 0,
+ 0
+ };
+
+ TBand bands[40], *band;
+ int n, num_bands;
+ TPos min, max, max_y;
+
+
+ /* Set up state in the raster object */
+ compute_cbox( RAS_VAR_ outline );
+
+ /* clip to target bitmap, exit if nothing to do */
+ if ( ras.max_ex <= 0 || ras.min_ex >= ras.target.width ||
+ ras.max_ey <= 0 || ras.min_ey >= ras.target.rows )
+ return 0;
+
+ if ( ras.min_ex < 0 ) ras.min_ex = 0;
+ if ( ras.min_ey < 0 ) ras.min_ey = 0;
+
+ if ( ras.max_ex > ras.target.width ) ras.max_ex = ras.target.width;
+ if ( ras.max_ey > ras.target.rows ) ras.max_ey = ras.target.rows;
+
+ /* simple heuristic used to speed-up the bezier decomposition */
+ /* see the code in render_conic and render_cubic for more details */
+ ras.conic_level = 32;
+ ras.cubic_level = 16;
+
+ {
+ int level = 0;
+
+
+ if ( ras.max_ex > 24 || ras.max_ey > 24 )
+ level++;
+ if ( ras.max_ex > 120 || ras.max_ey > 120 )
+ level += 2;
+
+ ras.conic_level <<= level;
+ ras.cubic_level <<= level;
+ }
+
+ /* setup vertical bands */
+ num_bands = ( ras.max_ey - ras.min_ey ) / ras.band_size;
+ if ( num_bands == 0 ) num_bands = 1;
+ if ( num_bands >= 39 ) num_bands = 39;
+
+ ras.band_shoot = 0;
+
+ min = ras.min_ey;
+ max_y = ras.max_ey;
+
+ for ( n = 0; n < num_bands; n++, min = max )
+ {
+ max = min + ras.band_size;
+ if ( n == num_bands - 1 || max > max_y )
+ max = max_y;
+
+ bands[0].min = min;
+ bands[0].max = max;
+ band = bands;
+
+ while ( band >= bands )
+ {
+ FT_Pos bottom, top, middle;
+ int error;
+
+
+ ras.num_cells = 0;
+ ras.invalid = 1;
+ ras.min_ey = band->min;
+ ras.max_ey = band->max;
+
+ error = FT_Outline_Decompose( outline, &interface, &ras ) ||
+ record_cell( RAS_VAR );
+
+ if ( !error )
+ {
+#ifdef SHELL_SORT
+ shell_sort( ras.cells, ras.num_cells );
+#else
+ quick_sort( ras.cells, ras.num_cells );
+#endif
+
+#ifdef DEBUG_GRAYS
+ check_sort( ras.cells, ras.num_cells );
+ dump_cells( RAS_VAR );
+#endif
+
+ grays_sweep( RAS_VAR_ &ras.target );
+ band--;
+ continue;
+ }
+
+ /* render pool overflow, we will reduce the render band by half */
+ bottom = band->min;
+ top = band->max;
+ middle = bottom + ( ( top - bottom ) >> 1 );
+
+ /* waoow! This is too complex for a single scanline, something */
+ /* must be really rotten here! */
+ if ( middle == bottom )
+ {
+#ifdef DEBUG_GRAYS
+ fprintf( stderr, "Rotten glyph!\n" );
+#endif
+ return 1;
+ }
+
+ if ( bottom-top >= ras.band_size )
+ ras.band_shoot++;
+
+ band[1].min = bottom;
+ band[1].max = middle;
+ band[0].min = middle;
+ band[0].max = top;
+ band++;
+ }
+ }
+
+ if ( ras.band_shoot > 8 && ras.band_size > 16 )
+ ras.band_size = ras.band_size / 2;
+
+ return 0;
+ }
+
+
+ extern
+ int grays_raster_render( PRaster raster,
+ FT_Raster_Params* params )
+ {
+ FT_Outline* outline = (FT_Outline*)params->source;
+ FT_Bitmap* target_map = params->target;
+
+
+ if ( !raster || !raster->cells || !raster->max_cells )
+ return -1;
+
+ /* return immediately if the outline is empty */
+ if ( outline->n_points == 0 || outline->n_contours <= 0 )
+ return 0;
+
+ if ( !outline || !outline->contours || !outline->points )
+ return ErrRaster_Invalid_Outline;
+
+ if ( outline->n_points !=
+ outline->contours[outline->n_contours - 1] + 1 )
+ return ErrRaster_Invalid_Outline;
+
+ if ( !target_map || !target_map->buffer )
+ return -1;
+
+ /* XXXX: this version does not support monochrome rendering yet! */
+ if ( !(params->flags & ft_raster_flag_aa) )
+ return ErrRaster_Invalid_Mode;
+
+ ras.outline = *outline;
+ ras.target = *target_map;
+ ras.num_cells = 0;
+ ras.invalid = 1;
+
+ ras.render_span = (FT_Raster_Span_Func)grays_render_span;
+ ras.render_span_data = &ras;
+
+ if ( params->flags & ft_raster_flag_direct )
+ {
+ ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
+ ras.render_span_data = params->user;
+ }
+
+ return grays_convert_glyph( (PRaster)raster, outline );
+ }
+
+
+ /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
+ /**** a static object. *****/
+
+#ifdef _STANDALONE_
+
+ static
+ int grays_raster_new( void* memory,
+ FT_Raster* araster )
+ {
+ static TRaster the_raster;
+
+ UNUSED( memory );
+
+
+ *araster = (FT_Raster)&the_raster;
+ memset( &the_raster, 0, sizeof ( the_raster ) );
+
+ return 0;
+ }
+
+
+ static
+ void grays_raster_done( FT_Raster raster )
+ {
+ /* nothing */
+ UNUSED( raster );
+ }
+
+#else /* _STANDALONE_ */
+
+ static
+ int grays_raster_new( FT_Memory memory,
+ FT_Raster* araster )
+ {
+ FT_Error error;
+ PRaster raster;
+
+
+ *araster = 0;
+ if ( !ALLOC( raster, sizeof ( TRaster ) ) )
+ {
+ raster->memory = memory;
+ *araster = (FT_Raster)raster;
+ }
+
+ return error;
+ }
+
+
+ static
+ void grays_raster_done( FT_Raster raster )
+ {
+ FT_Memory memory = (FT_Memory)((PRaster)raster)->memory;
+
+
+ FREE( raster );
+ }
+
+#endif /* _STANDALONE_ */
+
+
+ static
+ void grays_raster_reset( FT_Raster raster,
+ const char* pool_base,
+ long pool_size )
+ {
+ PRaster rast = (PRaster)raster;
+
+
+ if ( raster && pool_base && pool_size >= 4096 )
+ init_cells( rast, (char*)pool_base, pool_size );
+
+ rast->band_size = ( pool_size / sizeof ( TCell ) ) / 8;
+ }
+
+
+ FT_Raster_Funcs ft_grays_raster =
+ {
+ ft_glyph_format_outline,
+
+ (FT_Raster_New_Func) grays_raster_new,
+ (FT_Raster_Reset_Func) grays_raster_reset,
+ (FT_Raster_Set_Mode_Func)0,
+ (FT_Raster_Render_Func) grays_raster_render,
+ (FT_Raster_Done_Func) grays_raster_done
+ };
+
+
+/* END */
--- /dev/null
+++ b/src/smooth/ftgrays.h
@@ -1,0 +1,49 @@
+/***************************************************************************/
+/* */
+/* ftgrays.h */
+/* */
+/* FreeType smooth renderer declaration */
+/* */
+/* Copyright 1996-2000 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used */
+/* modified and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+#ifndef FTGRAYS_H
+#define FTGRAYS_H
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+#ifdef _STANDALONE_
+#include "ftimage.h"
+#else
+#include <freetype/ftimage.h>
+#endif
+
+ /*************************************************************************/
+ /* */
+ /* To make ftgrays.h independent from configuration files we check */
+ /* whether FT_EXPORT_DEF has been defined already. */
+ /* */
+ /* On some systems and compilers (Win32 mostly), an extra keyword is */
+ /* necessary to compile the library as a DLL. */
+ /* */
+#ifndef FT_EXPORT_VAR
+#define FT_EXPORT_VAR(x) extern x
+#endif
+
+ FT_EXPORT_VAR(FT_Raster_Funcs) ft_grays_raster;
+
+ #ifdef __cplusplus
+ }
+ #endif
+
+#endif
--- /dev/null
+++ b/src/smooth/ftsmooth.c
@@ -1,0 +1,176 @@
+#include <freetype/internal/ftobjs.h>
+#include <ftsmooth.h>
+#include <ftgrays.h>
+
+ /* initialise renderer - init its raster */
+ static FT_Error ft_smooth_init( FT_Renderer render )
+ {
+ FT_Library library = FT_MODULE_LIBRARY(render);
+
+ render->clazz->raster_class->raster_reset( render->raster,
+ library->raster_pool, library->raster_pool_size );
+
+ return 0;
+ }
+
+
+
+ /* sets render-specific mode */
+ static FT_Error ft_smooth_set_mode( FT_Renderer render,
+ FT_ULong mode_tag,
+ FT_Pointer data )
+ {
+ /* we simply pass it to the raster */
+ return render->clazz->raster_class->raster_set_mode(
+ render->raster, mode_tag, data );
+ }
+
+ /* transform a given glyph image */
+ static FT_Error ft_smooth_transform( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_Matrix* matrix,
+ FT_Vector* delta )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ if (slot->format != render->glyph_format)
+ {
+ error = FT_Err_Invalid_Argument;
+ goto Exit;
+ }
+
+ if (matrix)
+ FT_Outline_Transform( &slot->outline, matrix );
+
+ if (delta)
+ FT_Outline_Translate( &slot->outline, delta->x, delta->y );
+
+ Exit:
+ return error;
+ }
+
+ /* return the glyph's control box */
+ static void ft_smooth_get_cbox( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_BBox *cbox )
+ {
+ MEM_Set( cbox, 0, sizeof(*cbox) );
+
+ if (slot->format == render->glyph_format)
+ FT_Outline_Get_CBox( &slot->outline, cbox );
+ }
+
+
+ /* convert a slot's glyph image into a bitmap */
+ static FT_Error ft_smooth_render( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_UInt mode,
+ FT_Vector* origin )
+ {
+ FT_Error error;
+ FT_Outline* outline;
+ FT_BBox cbox;
+ FT_UInt width, height, pitch;
+ FT_Bitmap* bitmap;
+ FT_Memory memory;
+
+ FT_Raster_Params params;
+
+ /* check glyph image format */
+ if (slot->format != render->glyph_format)
+ {
+ error = FT_Err_Invalid_Argument;
+ goto Exit;
+ }
+
+ /* check mode */
+ if ( !(mode & ft_render_mode_antialias) )
+ return FT_Err_Cannot_Render_Glyph;
+
+ outline = &slot->outline;
+
+ /* translate the outline to the new origin if needed */
+ if (origin)
+ FT_Outline_Translate( outline, origin->x, origin->y );
+
+ /* compute the control box, and grid fit it */
+ FT_Outline_Get_CBox( outline, &cbox );
+
+ cbox.xMin &= -64;
+ cbox.yMin &= -64;
+ cbox.xMax = (cbox.xMax+63) & -64;
+ cbox.yMax = (cbox.yMax+63) & -64;
+
+ width = (cbox.xMax - cbox.xMin) >> 6;
+ height = (cbox.yMax - cbox.yMin) >> 6;
+ bitmap = &slot->bitmap;
+ memory = slot->face->memory;
+
+ /* release old bitmap buffer */
+ if ((slot->flags & ft_glyph_own_bitmap))
+ {
+ FREE(bitmap->buffer);
+ slot->flags &= ~ft_glyph_own_bitmap;
+ }
+
+ /* allocate new one, depends on pixel format */
+ pitch = width;
+ bitmap->pixel_mode = ft_pixel_mode_grays;
+ bitmap->num_grays = 256;
+ bitmap->width = width;
+ bitmap->rows = height;
+ bitmap->pitch = pitch;
+
+ if (ALLOC( bitmap->buffer, (FT_ULong)pitch * height ))
+ goto Exit;
+
+ slot->flags |= ft_glyph_own_bitmap;
+
+ /* translate outline to render it into the bitmap */
+ FT_Outline_Translate( outline, -cbox.xMin, -cbox.yMin );
+
+ /* set up parameters */
+ params.target = bitmap;
+ params.source = outline;
+ params.flags = ft_raster_flag_aa;
+
+ /* render outline into the bitmap */
+ error = render->raster_render( render->raster, ¶ms );
+ if (error) goto Exit;
+
+ slot->format = ft_glyph_format_bitmap;
+ slot->bitmap_left = cbox.xMin >> 6;
+ slot->bitmap_top = cbox.yMax >> 6;
+
+ Exit:
+ return error;
+ }
+
+
+ const FT_Renderer_Class ft_smooth_renderer_class =
+ {
+ {
+ ft_module_renderer,
+ sizeof( FT_RendererRec ),
+
+ "smooth",
+ 0x10000,
+ 0x20000,
+
+ 0, /* module specific interface */
+
+ (FT_Module_Constructor) ft_smooth_init,
+ (FT_Module_Destructor) 0,
+ (FT_Module_Requester) 0
+ },
+
+ ft_glyph_format_outline,
+
+ (FTRenderer_render) ft_smooth_render,
+ (FTRenderer_transform) ft_smooth_transform,
+ (FTRenderer_getCBox) ft_smooth_get_cbox,
+ (FTRenderer_setMode) ft_smooth_set_mode,
+
+ (FT_Raster_Funcs*) &ft_grays_raster
+ };
+
--- /dev/null
+++ b/src/smooth/ftsmooth.h
@@ -1,0 +1,8 @@
+#ifndef FTSMOOTH_H
+#define FTSMOOTH_H
+
+#include <freetype/ftrender.h>
+
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_smooth_renderer_class;
+
+#endif /* FTSMOOTH_H */
--- /dev/null
+++ b/src/smooth/module.mk
@@ -1,0 +1,7 @@
+make_module_list: add_smooth_renderer
+
+add_smooth_renderer:
+ $(OPEN_DRIVER)ft_smooth_renderer_class$(CLOSE_DRIVER)
+ $(ECHO_DRIVER)smooth $(ECHO_DRIVER_DESC)anti-aliased bitmap renderer$(ECHO_DRIVER_DONE)
+
+# EOF
--- /dev/null
+++ b/src/smooth/rules.mk
@@ -1,0 +1,74 @@
+#
+# FreeType 2 renderer module build rules
+#
+
+
+# Copyright 1996-2000 by
+# David Turner, Robert Wilhelm, and Werner Lemberg.
+#
+# This file is part of the FreeType project, and may only be used, modified,
+# and distributed under the terms of the FreeType project license,
+# LICENSE.TXT. By continuing to use, modify, or distribute this file you
+# indicate that you have read the license and understand and accept it
+# fully.
+
+
+# renderer driver directory
+#
+SMOOTH_DIR := $(SRC_)smooth
+SMOOTH_DIR_ := $(SMOOTH_DIR)$(SEP)
+
+
+# additional include flags used when compiling the driver
+#
+SMOOTH_INCLUDE := $(SMOOTH_DIR)
+
+# compilation flags for the driver
+#
+SMOOTH_CFLAGS := $(SMOOTH_INCLUDE:%=$I%)
+SMOOTH_COMPILE := $(FT_COMPILE) $(SMOOTH_CFLAGS)
+
+
+# SMOOTH driver sources (i.e., C files)
+#
+SMOOTH_DRV_SRC := $(SMOOTH_DIR_)ftgrays.c \
+ $(SMOOTH_DIR_)ftsmooth.c
+
+# SMOOTH driver headers
+#
+SMOOTH_DRV_H := $(SMOOTH_DRV_SRC:%c=%h)
+
+
+# SMOOTH driver object(s)
+#
+# SMOOTH_DRV_OBJ_M is used during `multi' builds.
+# SMOOTH_DRV_OBJ_S is used during `single' builds.
+#
+SMOOTH_DRV_OBJ_M := $(SMOOTH_DRV_SRC:$(SMOOTH_DIR_)%.c=$(OBJ_)%.$O)
+SMOOTH_DRV_OBJ_S := $(OBJ_)smooth.$O
+
+# SMOOTH driver source file for single build
+#
+SMOOTH_DRV_SRC_S := $(SMOOTH_DIR_)smooth.c
+
+
+# SMOOTH driver - single object
+#
+$(SMOOTH_DRV_OBJ_S): $(SMOOTH_DRV_SRC_S) $(SMOOTH_DRV_SRC) \
+ $(FREETYPE_H) $(SMOOTH_DRV_H)
+ $(SMOOTH_COMPILE) $T$@ $(SMOOTH_DRV_SRC_S)
+
+
+# SMOOTH driver - multiple objects
+#
+$(OBJ_)%.$O: $(SMOOTH_DIR_)%.c $(FREETYPE_H) $(SMOOTH_DRV_H)
+ $(SMOOTH_COMPILE) $T$@ $<
+
+
+# update main driver object lists
+#
+DRV_OBJS_S += $(SMOOTH_DRV_OBJ_S)
+DRV_OBJS_M += $(SMOOTH_DRV_OBJ_M)
+
+
+# EOF
--- /dev/null
+++ b/src/smooth/smooth.c
@@ -1,0 +1,4 @@
+#define FT_MAKE_OPTION_SINGLE_OBJECT
+#include <ftgrays.c>
+#include <ftsmooth.c>
+
--- /dev/null
+++ b/src/smooth/smooth.h
@@ -1,0 +1,14 @@
+#ifndef RENDERER_H
+#define RENDERER_H
+
+#include <freetype/ftrender.h>
+
+#ifndef FT_CONFIG_OPTION_NO_STD_RASTER
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_std_renderer_class;
+#endif
+
+#ifndef FT_CONFIG_OPTION_NO_SMOOTH_RASTER
+ FT_EXPORT_VAR(const FT_Renderer_Class) ft_smooth_renderer_class;
+#endif
+
+#endif /* RENDERER_H */