ref: 0f644f38e939f3fa82a2a91e94d53c6e05750e44
parent: c5761764614c1bb25d53adebe406161ee679628e
author: Anuj Verma <[email protected]>
date: Thu Aug 20 05:25:15 EDT 2020
[sdf] Add functions to compute pixel edge distances. * src/sdf/ftbsdf.c (compute_edge_distance, bsdf_approximate_edge): New functions.
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,12 @@
2020-08-20 Anuj Verma <[email protected]>
+ [sdf] Add functions to compute pixel edge distances.
+
+ * src/sdf/ftbsdf.c (compute_edge_distance, bsdf_approximate_edge):
+ New functions.
+
+2020-08-20 Anuj Verma <[email protected]>
+
[sdf] Add function to find edge pixels in a grid of alpha values.
* src/sdf/ftbsdf.c (bsdf_is_edge): New function.
--- a/src/sdf/ftbsdf.c
+++ b/src/sdf/ftbsdf.c
@@ -192,7 +192,7 @@
FT_Int w, /* width */
FT_Int r ) /* rows */
{
- FT_Bool is_edge = 0;
+ FT_Bool is_edge = 0;
ED* to_check = NULL;
FT_Int num_neighbors = 0;
@@ -239,5 +239,259 @@
#undef CHECK_NEIGHBOR
+
+ /**************************************************************************
+ *
+ * @Function:
+ * compute_edge_distance
+ *
+ * @Description:
+ * Approximate the outline and compute the distance from `current`
+ * to the approximated outline.
+ *
+ * @Input:
+ * current ::
+ * Array of Euclidean distances. `current` must point to the position
+ * for which the distance is to be caculated. We treat this array as
+ * a two-dimensional array mapped to a one-dimensional array.
+ *
+ * x ::
+ * The x coordinate of the `current` parameter in the array.
+ *
+ * y ::
+ * The y coordinate of the `current` parameter in the array.
+ *
+ * w ::
+ * The width of the distances array.
+ *
+ * r ::
+ * Number of rows in the distances array.
+ *
+ * @Return:
+ * A vector pointing to the approximate edge distance.
+ *
+ * @Note:
+ * This is a computationally expensive function. Try to reduce the
+ * number of calls to this function. Moreover, this must only be used
+ * for edge pixel positions.
+ *
+ */
+ static FT_16D16_Vec
+ compute_edge_distance( ED* current,
+ FT_Int x,
+ FT_Int y,
+ FT_Int w,
+ FT_Int r )
+ {
+ /*
+ * This function, based on the paper presented by Stefan Gustavson and
+ * Robin Strand, gets used to approximate edge distances from
+ * anti-aliased bitmaps.
+ *
+ * The algorithm is as follows.
+ *
+ * (1) In anti-aliased images, the pixel's alpha value is the coverage
+ * of the pixel by the outline. For example, if the alpha value is
+ * 0.5f we can assume that the outline passes through the center of
+ * the pixel.
+ *
+ * (2) For this reason we can use that alpha value to approximate the real
+ * distance of the pixel to edge pretty accurately. A simple
+ * approximation is `(0.5f - alpha)`, assuming that the outline is
+ * parallel to the x or y~axis. However, in this algorithm we use a
+ * different approximation which is quite accurate even for
+ * non-axis-aligned edges.
+ *
+ * (3) The only remaining piece of information that we cannot
+ * approximate directly from the alpha is the direction of the edge.
+ * This is where we use Sobel's operator to compute the gradient of
+ * the pixel. The gradient give us a pretty good approximation of
+ * the edge direction. We use a 3x3 kernel filter to compute the
+ * gradient.
+ *
+ * (4) After the above two steps we have both the direction and the
+ * distance to the edge which is used to generate the Signed
+ * Distance Field.
+ *
+ * References:
+ *
+ * - Anti-Aliased Euclidean Distance Transform:
+ * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf
+ * - Sobel Operator:
+ * https://en.wikipedia.org/wiki/Sobel_operator
+ */
+
+ FT_16D16_Vec g = { 0, 0 };
+ FT_16D16 dist, current_alpha;
+ FT_16D16 a1, temp;
+ FT_16D16 gx, gy;
+ FT_16D16 alphas[9];
+
+
+ /* Since our spread cannot be 0, this condition */
+ /* can never be true. */
+ if ( x <= 0 || x >= w - 1 ||
+ y <= 0 || y >= r - 1 )
+ return g;
+
+ /* initialize the alphas */
+ alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha;
+ alphas[1] = 256 * (FT_16D16)current[-w ].alpha;
+ alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha;
+ alphas[3] = 256 * (FT_16D16)current[ -1].alpha;
+ alphas[4] = 256 * (FT_16D16)current[ 0].alpha;
+ alphas[5] = 256 * (FT_16D16)current[ 1].alpha;
+ alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha;
+ alphas[7] = 256 * (FT_16D16)current[ w ].alpha;
+ alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha;
+
+ current_alpha = alphas[4];
+
+ /* Compute the gradient using the Sobel operator. */
+ /* In this case we use the following 3x3 filters: */
+ /* */
+ /* For x: | -1 0 -1 | */
+ /* | -root(2) 0 root(2) | */
+ /* | -1 0 1 | */
+ /* */
+ /* For y: | -1 -root(2) -1 | */
+ /* | 0 0 0 | */
+ /* | 1 root(2) 1 | */
+ /* */
+ /* [Note]: 92681 is root(2) in 16.16 format. */
+ g.x = -alphas[0] -
+ FT_MulFix( alphas[3], 92681 ) -
+ alphas[6] +
+ alphas[2] +
+ FT_MulFix( alphas[5], 92681 ) +
+ alphas[8];
+
+ g.y = -alphas[0] -
+ FT_MulFix( alphas[1], 92681 ) -
+ alphas[2] +
+ alphas[6] +
+ FT_MulFix( alphas[7], 92681 ) +
+ alphas[8];
+
+ FT_Vector_NormLen( &g );
+
+ /* The gradient gives us the direction of the */
+ /* edge for the current pixel. Once we have the */
+ /* approximate direction of the edge, we can */
+ /* approximate the edge distance much better. */
+
+ if ( g.x == 0 || g.y == 0 )
+ dist = ONE / 2 - alphas[4];
+ else
+ {
+ gx = g.x;
+ gy = g.y;
+
+ gx = FT_ABS( gx );
+ gy = FT_ABS( gy );
+
+ if ( gx < gy )
+ {
+ temp = gx;
+ gx = gy;
+ gy = temp;
+ }
+
+ a1 = FT_DivFix( gy, gx ) / 2;
+
+ if ( current_alpha < a1 )
+ dist = ( gx + gy ) / 2 -
+ square_root( 2 * FT_MulFix( gx,
+ FT_MulFix( gy,
+ current_alpha ) ) );
+
+ else if ( current_alpha < ( ONE - a1 ) )
+ dist = FT_MulFix( ONE / 2 - current_alpha, gx );
+
+ else
+ dist = -( gx + gy ) / 2 +
+ square_root( 2 * FT_MulFix( gx,
+ FT_MulFix( gy,
+ ONE - current_alpha ) ) );
+ }
+
+ g.x = FT_MulFix( g.x, dist );
+ g.y = FT_MulFix( g.y, dist );
+
+ return g;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * bsdf_approximate_edge
+ *
+ * @Description:
+ * Loops over all the pixels and call `compute_edge_distance` only for
+ * edge pixels. This maked the process a lot faster since
+ * `compute_edge_distance` uses functions such as `FT_Vector_NormLen',
+ * which are quite slow.
+ *
+ * @InOut:
+ * worker ::
+ * Contains the distance map as well as all the relevant parameters
+ * required by the function.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function directly manipulates `worker->distance_map`.
+ *
+ */
+ static FT_Error
+ bsdf_approximate_edge( BSDF_Worker* worker )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Int i, j;
+ FT_Int index;
+ ED* ed;
+
+
+ if ( !worker || !worker->distance_map )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ ed = worker->distance_map;
+
+ for ( j = 0; j < worker->rows; j++ )
+ {
+ for ( i = 0; i < worker->width; i++ )
+ {
+ index = j * worker->width + i;
+
+ if ( bsdf_is_edge( worker->distance_map + index,
+ i, j,
+ worker->width,
+ worker->rows ) )
+ {
+ /* approximate the edge distance for edge pixels */
+ ed[index].near = compute_edge_distance( ed + index,
+ i, j,
+ worker->width,
+ worker->rows );
+ ed[index].dist = VECTOR_LENGTH_16D16( ed[index].near );
+ }
+ else
+ {
+ /* for non-edge pixels assign far away distances */
+ ed[index].dist = 400 * ONE;
+ ed[index].near.x = 200 * ONE;
+ ed[index].near.y = 200 * ONE;
+ }
+ }
+ }
+
+ Exit:
+ return error;
+ }
/* END */