Introduction to

Operating Systems Abstractions

%

Using Plan 9 from Bell Labs

Francisco J Ballesteros
Universidad Rey Juan Carlos

Copyright © 2006 Francisco J Ballesteros
Plan 9 is Copyright © 2002 Lucent Technologies Inc. All Rights Reserved.

To my wife

Preface

Using effectively the operating system is very important for anyone working with computers. It can be the

difference between performing most tasks by hand, and asking the computer to perform them.

Traditionally, Operating Systems courses used UNIX to do this. However, today there is no such thing as
UNIX. Linux is a huge system, full of inconsistencies, with programs that do multiple tasks and do not perform
them well. Linux manual pages just cannot be read.

These lecture notes use Plan 9 from Bell Labs to teach a first (practical!) course on operating systems. The
system is easy to use for programmers, and is an excellent example of high-quality system design and software
development. Studying its code reveals how simplicity can be more effective than contortions made by other sys-
tems.

The first Operating Systems course at Rey Juan Carlos University is focused on practice. Because in theory,
theory is like practice, but in practice it is not. What is important is for you to use the system, and to learn to
solve problems. Theory will come later to fill the gaps and try to give more insight about what a system does and
how can it be used.

The whole text assumes that you have been already exposed to computer, and used at least a computer run-
ning Windows. This is so common that it makes no sense to drop this assumption. Furthermore, we assume that
you already know how to write programs. This is indeed the case for the lecture this text is written for. One last
assumption is that you attended a basic computer architecture course, and you know at least basic concepts. There
is a quick review appendix in case you need to refresh your memory.

Throughout the text, thisoldfacefont is used when a new concept is introduced. This will help you to make
quick reviews and to double check that you know the concepts. All important concepts are listed in the index, at
the end of the book. Theonstant width teletype font is used to refer to machine data, including functions,
programs, and symbol names. In many cases, text in constant width font reproduces a session with the system
(e.g., typing some commands and showing their output). The text written by the user (and not by the computer) is
slightly slanted , but still in constant width. Note the difference with respect to the font used for text written by
a program, which is natlanted . Italics are used to emphasize things and to refer to the system manual, like in
intro(1). Regarding numeric values, we use the C notation to represent hexadecimal and octal numeric bases.

Unlike most other textbooks for operating systems courses, bibliographic references are kept to the bare mini-
mum. We cite a particular text when we think that it may be worth reading to continue learning about something
said in this book. So, do not quickly dismiss references. We encourage you to read them, to learn more. There are
not so many ones. If you want to get a thorough set of references for something discussed in the test, we suggest
looking at a more classical operating systems textbook, like for example [1].

It is important to note that this book is not a reference for using an operating system nor a reference for Plan
9 from Bell Labs. The user’'s manual that comes installed within the system is the proper reference to use. These
lecture notes just shows you how things work, by using them. Once you have gone through the course, you are
expected to search and use the user’'s manual as a reference.

One final note of caution. This text is to be read with a computer side by side. The only way to learn to use a
system is by actually using it. Reading this without doing so is meaningless.

I am grateful go to other colleagues who suffered or helped in one way or another to write this book. First,
authors of Plan 9 from Bell Labs made an awesome system, worth describing for an Operating Systems Course. It
cannot be overemphasized how much help the authors of Plan 9 provide to anyone asking questicianms the
list. For what is worth, | have to say that | am deeply grateful to people like Rob Pike, Dave Presotto, Jim McKie,
Russ Cox, and many others. In particular, Russ Cox seems to be a program listening for queStans att
least his response time suggests that. | have learned a lot from you all (or | tried). Other colleagues from Rey
Juan Carlos University helped me as well. Pedro de las Heras was eager to get new drafts for this manuscript.
Sergio Arévalo was an unlimited supply of useful comments and fixes for improving this book, specially for using
it as a textbook. José Centeno was scared to hell after reading our initial description of computer networks, and
helped to reach a much better description.

Francisco J. Ballesteros

Laboratorio de Sistemas,

Rey Juan Carlos University of Madrid
Madrid, Spain

2006

Table of Contents

1. Getting started 1

1.1. What is an Operating System? 1
1.2. Entering the system 3
1.3. Leaving the system 7
1.4. Editing and running commands 7
1.5. Obtaining help 11
1.6. Using files 13

1.7. Directories 16
1.8. Files and data 19
1.9. Permissions 23
1.10. Writing a C program in Plan 9 26
1.11. The Operating System and your programs 28
1.12. Where are the files? 30
1.13. The Shell, commands, binaries, and system calls 31
1.14. The Operating System and the hardware 32
2. Programs and Processes 35
2.1, Processes 35
2.2. Loaded programs 37
2.3. Process birth and death 42
2.4, System call errors 48
2.5. Environment 50
2.6. Process names and states 53
2.7. Debugging 56
2.8. Everything is a file! 59

3. Files 65
3.1 Input/Output 65
3.2. Write games 71
3.3. Read games 76
3.4. Creating and removing files 77
3.5. Directory entries 79
3.6. Listing files in the shell 84
3.7. Buffered Input/Output 87
4. Parent and Child 97
4.1. Running a new program 97
4.2, Process creation 98
4.3. Shared or not? 103
4.4, Race conditions 106
4.5. Executing another program 106
4.6. Using both calls 109
4.7. Waiting for children 110

4.8. Interpreted programs 114

5.1.
5.2
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

7.1,
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.
7.11.
7.12.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.

9.1.
9.2.
9.3.
9.4.

Talking Processes
Input/Output redirection
Conventions

Other redirections

Pipes

Using pipes

Notes and process groups
Reading, notes, and alarms
The file descriptor bulletin board
Delivering messages

Networking
Network connections
Names

Making calls
Providing services
System services
Distributed computing

Resources and Names
Resource fork

Protecting from notes
Environment in shell scripts
Independent children

Name spaces

Local name space tricks
Device files

Unions

Changing the name space
Using names

Sand-boxing

Distributed computing revisited

Using the Shell
Programs are tools
Lists

Simple things

Real programs
Conditions

Editing text

Moving files around

More tools

Regular expressions
Sorting and searching
Searching for changes
AWK

119
119
124
125
126
132
138
142
144
147

159
159

164

166
171
176
178

181
181
184
186
187
187
193
196
198
200
202
204
206

211
211
212
215
219
224
228
233

237
237
242
247

252

9.5.
9.6.

10.

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.

11.

11.1.
11.2.
11.3.
11.4.
11.5.
11.6.

12.

12.1.
12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
12.8.
12.9.

13.

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.
13.7.
13.8.
13.9.

14.

14.1.
14.2.
14.3.
14.4.
14.5.

Processing data
File systems

Concurrency
Synchronization
Locks

Queueing locks
Rendezvous
Sleep and wakeup
Shared buffers
Other tools

Threads and Channels
Threads

Thread names

Channels

I/O in threaded programs
Many to one communication
Other calls

User Input/Output
Console input
Characters and runes
Mouse input

Devices for graphics
Graphics

A graphic slider
Keyboard input
Drawing text

The window system

Building a File Server
Disk storage

The file system protocol
Semaphores for Plan 9
Speaking 9P

9P requests

Semaphores
Semaphores as files

A program to make things
Debugging and testing

Security

Secure systems

The local machine

Distributed security and authentication
Authentication agents

Secure servers

258
265

271

271

275
283

293

296

299

306

311
311
315
321
328
332
340

345
345
350
352
356
359
362
371
377
378

387
387
392
399
401
405
409
412
422
429

433
433
434
436
440
447

14.6. Identity changes 451
14.7. Accounts and keys 455
14.8. What now? 456

1 — Getting started

1.1. What is an Operating System?

Theoperating systemis the software that lets you use the computer. What this means depends on the user’s per-
spective. For example, for my mother, the operating system would include not just Windows, but most programs
in the computer as well. For a programmer, many applications are not considered part of the system. However, he
would consider compilers, libraries, and other programming tools as part of it. For a systems programmer, the
software considered part of the system might be even more constrained. We will get back to this later.

This book aims to teach you how to effectively use the system (in many cases, we say$tisiri to refer
to the operating system). This means using the functions it provides, and the programs and languages that come
with it to let the machine do the job. The difference between ignoring how to ask the system to do things and
knowing how to do it, is the difference between requiring hours or days to accomplish many tasks and being able
to do it in minutes. You have to make your choice. If you want to read a textbook that describes the theory and
abstract concepts related to operating systems, you may refer to [7].

So, what is an operating system? It is jastet of programs that lets you use the compuiére point is that
hardware is complex and is far from the concepts you use as a programmer. There are many different types of pro-
cessors, hardware devices for Input/Output (1/0), and other artifacts. If you had to write software to drive all the
ones you want to use, you would not have time to write your own application software. The concept is therefore
similar to a software library. Indeed, operating systems begun as libraries used by people to write programs for a
machine.

When you power up the computer, the operating system program is loaded into memory. This program is
called thekernel. Once initialized, the system program is prepared to run user programs and permits them use the
hardware by calling into it. From this point on, you can think about the system as a library. There are three main
benefits that justify using an operating system:

1 Youdon't have to write the operating system software yourself, you can reuse it.

2 You can forget about details related to how the hardware works, becau$brtmg provides more abstract
data types to package services provided by the hardware.

3 You can forget about how to manage and share the hardware among different programs in the same com-
puter, because thlibrary has been implemented for use with multiple programs simultaneously.

Most of the programs you wrote in the past used disks, displays, keyboards, and other devices. You did not have
to write the software to drive these devices, which is nice. This argument is so strong that nothing more should

have to be said to convince you. It is true that most programmers underestimate the effort made by others and
overestimate what they can do by themselves. But surely you would not apply this to all the software necessary to
let you use the hardware.

Abstract data types are also a convenience to write software. For example, you wrote prograrfikesasing
However, your hard disk knowsothing about files. Your hard disk knows how to store blocks of bytes. Even
more, it only knows about blocks of the same size. However, you prefer toamedor a piece of persistent data
in your disk, that you imagine as contiguous storage nicely packagetilen a'he operating system invents the
file data type, and provides you with operations to handle objects of this type. Even thadieé&ts an inven-
tion of the system.

This is so important, that even thieardwaré does this. Consider the disk. The interface used by the operat-
ing system to access the disk is usually a set of registers that permits transferring blocks of bytes from the disk to
main memory and vice-versa. The system thinks that blocks are contiguous storage identified by an index, and
therefore, it thinks that the disk is an array of blocks. However, this is far from being the truth. Running in the cir-
cuitry of a hard disk there is a plethora of software inventing this lie. These days, nobody (but for those working
for the disk manufacturer) knows really what happens inside your disk. Many of them use complex geometries to
achieve better performance. Most disks have also memory used to cache entire tracks. What old textbooks say
about disks is no longer true. However, the operating system still works because it is using its familiar disk
abstraction.

-2-

Using abstract data types instead of the raw hardware has another benefit: portability. If the hardware
changes, but the data type you use remains the same, your program would still work. Did your programs using
files still work when used on a different disk?

Note that the hardware may change either because you replace it with more modern one, or because you
move your program to a different computer. Because both hardware and systems are matukeckvitard-
compatibility in mind, which means that they try hard to work for programs written for previous versions of the
hardware or the system. Thus, it might even be unnecessary to recompile your program if the basic architecture
remains the same. For instance, your Windows binaries would probably work in any PC you might find with this
system. When they do not work, it is probably not because of the hardware, but due to other reasons (a missing
library in the system or a bug).

This is the reason why operating systems are sometimes called (at least in textbookslanachine.
They provide a machine that does not exist, physically, hence it is virtual. The virtual machine provides files, pro-
cesses, network connections, windows, and other artifacts unknown to the bare hardware.

With powerful computers like the ones we have today, most machines are capable of executing multiple pro-
grams simultaneously. The system makes it easy to keep these programs running, unaware of the underlying com-
plexity resulting from sharing the machine among them.

Did you notice that it was natural for you to write and execute a program as if the computer was all for
itself? However, | would say that at least an editor, a web browser, and perhaps a music player were executing at
the same time. The system decides which parts of the machine, and at which times, are to be used by each pro-
gram. That is, the systemultiplexeshe machine among different applications. The abstractions it provides try
to isolate one executing program from another, so that you can write programs without having to consider all the
things that happen inside your computer while they run.

Deciding which resources are used by which running programs, and administering them is called, not sur-
prisingly, resource managementTherefore the operating system is alsoremource manager It assigns
resources to programs, and multiplexes resources among programs.

Some resources must baultiplexed on spagce.e. different parts of the resource are given to different pro-
grams. For example, memory. Different programs use different parts of your computer's memory. However,
other resources cannot be used by several programs at the same time. Think on the processor. It has a set of regis
ters, but a compiled program is free to use any of them. What the system does is to assign the whole resource for a
limited amount of time to a program, and then to another one in turn. In this case, the resouutgpkexed on
time Because machines are so fast, you get the illusion that all the programs work nicely as if the resource was
always theirs.

People make mistakes, and programs have bugs. A bug in a program may bring the whole system down if
the operating system does not take countermeasures. However, the system is not God, and magic does not exist
(or does it?). Most systems use hardware facilities to protect executing programs, and files, from accidents.

For example, one of the first things that the system does is to protect itself. The memory used to keep the
system program is marked psvilegedand made untouchable by non-privileged software. The privilege-level is
determined by a bit in the processor and some information given to the hardware. The system runs with this bit
set, but your programs do not. This means that the system can read the memory used by your program, but not the
other way around. Also, each program can read and write only its own memory (assigned to it by the system).
This means that a misleading pointer in a buggy program would not affect other programs. Did you notice that
when your programs crash the other programs seem to remain unaffected? Can you say why?

To summarize, the operating system is just some software that provides convenient abstractions to write pro-
grams without dealing with the underlying hardware by ourselves. To do so, it has to manage the different
resources to assign them to different programs and to protect ones from others. In any case, the operating system
is just a set of programs, nothing else.

1.2. Entering the system

In this course you will be using Plan 9 from Bell Labs. There is a nice paper that describes the entire system in a
few pages [4]. All the programs shown in this book are written for this operating system. Before proceeding, you

need to know how to enter the system, edit files and run commands. This will be necessary for the rest of this
book. One word of caution, if you know UNIX, Plan 9 is not UNIX, you should forget what you assume about

UNIX while using this system.

In a Plan 9 system, you useerminal to perform your tasks. The terminal is a machine that lets you exe-
cute commands by using the screen, mouse, and keyboard as input/output devices. See figummmaAd
is simply some text you type to ask for something. Most likely, you will be using a PC as your terminal. The
window system the program that implements and draws the windows you see in the screen, runs at your termi-
nal. The commands you execute, which are also programs, run at your terminal. Editing happens at your terminal.
However, none of the files you are using are stored at your terminal. Your terminal’s disk is not used at all. In
fact, the machine might be diskless!

network

Files,
Accounts, ...

network '

Command execution,
Window system, ...

Figure 1.1: You terminal provides you with a window system. Your files are not there.

There is one reason for doing this. Because your terminal does not keep state (i.e., data in your files), it can be
replaced at will. If you move to a different terminal and start a session there, you will see the very same environ-
ment you saw at the old terminal. Because terminals do not keep state, they arestzabéass Another com-

pelling reason is that the whole system is a lot easier to administer. For example, none of the terminals at the uni-
versity had to be installed or customized to be used with Plan 9. There is nothing to install because there is no
state to keep within the terminal, remember?

Your files are kept at another machine, called fileeserver. The reason for this name is that the machine
serveqi.e., provides) files to other machines in the network. In general, in a network of computers (or programs)
a server is a program that provides any kind of service (e.g., file storage). Other programs order the server to per-
form operations on its files, for example, to store new files or retrieve data. These programs placing orders on the
server are calledlients. In general, a client sends a message to a server asking it to perform a certain task, and
the server replies back to the client with the result for the operation.

To use Plan 9, you must switch on your terminal. Depending on the local installation, you may have to
select PXE as the boot device (PXE is a facility that lets the computer load the system from the network). But per-
haps the terminal hardware has been configured to boot right from the network and you can save this step. Once
the Plan 9 operating system program (you know,kéne) has been loaded into memory, the screen looks simi-
lar to this:

PBS...

Plan 9

cpu0: 1806MHz Genuinelntel P6 (cpuid: AX 0x06D8 DX OXFE9FBBF)
ELCR: OE20

#l0: AMD79C970: 10Mbps port 0x1080 irq 10: 000c292839fc

#|1: AMD79C970: 10Mbps port 0x1400 irg 9: 00029283906
#U/usbO: uhci: port 0x1060 irq 9

512M memory: 206M kernel data, 305M user, 930M swap

root is from (local, tcp)[tcp]:

-4 -

There are various messages that show some information about your terminal, including how much memory you
have. Then, Plan 9 asks you where do you want to take your files from. To do so, it watesat, i.e., some

text to let you know that a program is waiting for you to type something. In this prompt, you caicsee
between square brackets. That is the default value used if you hit return without further typing. Régyitg

this prompt means to use the TCP network protocol to reach the files kept in the machine that provides them to
your terminal (called, the file server). Usually, you just have to hit return at this stage. This leads to another
prompt, asking you to introduce your user name.

You may obtain a user name by asking the administrator of the Plan 9 system to provide one for you (along
with a password that you will have to specify). This is called opening@ount In this example we will type
nemo as the user name. What follows is the dialog with the machine to enter the system.

user[none]: nemo

time...version...

IAdding key: dom=dat.escet.urjc.es proto=p9sk1l
user[nemo]: Return

password: type your password here and press return
!

This dialog shows all conventions used in this book. Text written by the computer (the system, a program, ...) is
in constant width font, like iruser[none] . Text you type is in a slightly slanted variant of the same font, like

in nemo. When the text you type is a special key not shown in the screen, we use boldface Rigrim. Any
comment we make is in italics, like type your passwordNow we can go back to how do we enter the system.

At the user prompt, you told your terminal who you are. Your terminal trusts you. Therefore, there is no
need to give it a password. At this point you have an open account at your terminal! This is to say that you now
have a program running on your nhame in the computer. By the way, entering the system is alstoggiteyl
into the system. Leaving the system is called usuaifyng out.

However, the file server needs some proof to get convinced that you are who you say you are. That is why
you will get immediately two more prompts: one to ask your user name at the file server, and one to ask for your
secret password for that account. Usually, the user name for your account in the file server is also that used in the
terminal, so you may just hit return and type your password when prompted.

If you come from UNIX, be aware not to type your password immediately after you typed your user name
for the first time. That would be the file server user name, and not the password. All your password would be in
the clear in the screen for anyone to read.

You are in! If this is the first time you enter a Plan 9 system you have now the prompt of a ssiséim
(after several error messages)shellis a program that lets you execute commands in the computer. In Windows,
the window system itself is the system shell. There is another shell in Windows, if you eRaguteommand
in the start menu you get a line of text where you can type commands. Thedmraand line

At this point in your Plan 9 session, you can also type commands to the shell that is running for you. The
shell is a programtc in this case, that writes a prompt, reads a command (text) line, executes it, waits for the
command to complete, and then repeats the whole thing.

The shell prompt may b&erm%, or perhaps just a semicolon (which is the prompt we use in this book).
Because you never entered the system, and because your files are yours, nobody created a few files necessary tc
automatically start the window system when you enter the system. This is why you got some error messages
complaining about some missing files. The only file created for you was a folder (we use thedirantery)
where you can save your files. That directory is ybame directory.

Proceeding is simple. If you execute
/sys/lib/newuser

thenewuser program will create a few files for you and staid , the Plan 9 window system. To run this com-
mand, type/sys/lib/newuser and press return. All the commands are executed that way, you type them at
the shell prompt and press return.

Runningnewuser is only necessary the first time you enter the system. Once executed, this program cre-
ates for you grofile file that is executed when you enter the system, and gtartsfor you. The profile for
the usememo is kept in the file/usr/nemollib/profile . Users are encouraged to edit their profiles to

Figure 1.2: Your terminal after entering rio. Isn't it a clean window system?

add any command they want to execute upon entering the system, to customize the environment for their needs.
To let you check if things went right, figure 1.2 shows your screen once rio started.

1.3. Leaving the system

To leave your terminal you have all you need. Press the terminal power button (don't look at the window system
for it) and switch it off. Because the files are kept in the file server, any file you changed is already kept safe in the
file server. Your terminal has nothing to save. You can switch it off at any time.

1.4. Editing and running commands

The window system is a program that can be used to create windows. Initially, each window runs the Plan 9 shell,
another program callect . To create a window you must press the right mouse button (button-3) and hold it. A
menu appears and you can move the mouse (without releasing the button) to select a particular command. You
can selecNew(see figure 1.3) by releasing the mouse on top of that command.

Becauseio is now expecting one argument, the pointer is not shown as an arrow after exddeinig is
shown as a cross. The argument requires is the rectangle where to show the window. To provide it, you press
button-3, then sweep a rectangle in the screen (e.g., from the upper left corner to the bottom right one), and then
release button-3. Now you have your shell. The otther commands are similar. They let you resize, move,
delete, and hide any window. All of them require that you identify which window is to be involved. That is done
by a single button-3 click on the window. Some of them (eRgesize) require that you provide an additional
rectangle (e.g., the new one to be used after the resize). This is done as we did before.

The window system uses the real display, keyboard, and mouse, to provide multiple (virtual) ones. A command
running at a window thinks that it has the real display, keyboard, and mouse. That is far from being the truth! The
window system is the one providing a fake set of display, keyboard, and mouse to programs running in that win-
dow. You see that a window system is simply a program iatiplexeghe real user I/O devices to permit multi-

ple programs to have their own virtual ones.

It will not happen in a while, but in the near future we will be typing many commands in a window. As
commands write text in the window, it may fill up and reach the last (bottom) line in the window. At this point,
the window will not scroll down to show more text unless you type the down arrowlkery the window. The up
arrow key, 1, can be used to scroll up the window. You can edit all the text in the window. However, commands
may be typed only at the end. You can always use the mouse to click near the end and type new commands if you

Resize f
Move
Delete
Hide

Figure 1.3: The rio menu for mouse button-3.
changed. Th®eletekey can be used to stop a command, should you want to do so.

To edit files, and also to run commands and most other things (hence its name), aamesea user inter-
face for programmers developed by Rob Pike. When you run acme in your new window it would look like shown

in figure 1.4. Just type the command name, in the new window (which has a shell accepting commands) and
press return.

Newcol Kill Putall Dump Exit

New Cut Paste Snarf Sort Zerox Delcl] | New Cut Paste Snarf Sort Zerox Delcol |
fust/nemo/ Del Snarf Get | Look]
II:)im" lib/ tmp/

Figure 1.4: Acme: used to edit, browse system files, and run commands.

As you can see, acme displays a set of windows using two columns initially. Acme is indeed a window sys-
tem! Each window in acme shows a file, a folder, or the output of commands. In the figure, there is a single win-
dow showing the directory (remember, this is the name we use for foldemghemo . For Nemq that is the
home directory As you can see, the horizontal text line above each window is calleighae for the window.

In the figure, the tag line for the window showinAgsr/nemo contains the following text:

/usr/nemo Del Snarf Get | Look

Each tag line contains on the left the name of the file or directory shown. Some other words follow, which repre-
sent commands (buttons!). For example, our tag line shows the commeahdSnarf , Get, andLook .

Within acme, the mouse left mouse button (button-1) can be used to select a portion of text, or to change the
insertion point (the tiny vertical bars) where text is to be inserted. All the text shown can be edited. If we click
beforeLook with the left button, do not move the mouse, and t@maild , the tag line would now contain:

/usr/nemo Del Snarf Get | Could Look

The button-1 can be also used to drag a window and move it somewhere else, to adjust its position. This is done
by dragging the tiny square shown near the left of the tag line for the window. Resizing a window is done in the
same way, but a single click with the middle button (button-2) in the square can maximize a window if you need
more space. The shaded boxes near the top-left corner of each column can be used in the same way, to rearrange
the layout for entire columns.

The middle button (button-2) is used in acme to execute commands. Those shown in the figure are under-
stood by acme itself. For example, a click with the button-2Dah in our tag line would executBel (an acme
command), and delete the window. Any text shown by acme can be used as a command. For commands acme
does not implement, Plan 9 is asked to execute them.

Some commands understood by acmel2et, to delete the windowSnarf , to copy the selected text to
the clipboardGet, to reread the file shown (and discard your edits), Batl, to store your edits back to the file.
Another useful command Bxit , to exit from acme. For example, to create a new file with some text in it:

1 ExecuteGet with a button-2 click on that word. You get a new window (that has no file name).

2 Give a name to the file. Just click (button-1) near the left of the tag line for the new window and type the file
name where it belongs. The file name typed on the left of the tag line is used for acme to identify which file
the window is for. For example, we could typasr/nemo/newfile (you would replacanemo with
your own user name).

3 Point to the body of the window and type what you want.
4 ExecutePut inthat window. The file (whose name is shown in the tag line) is saved.

You may notice that the window fdusr/nemo is not showing the new file. Acme only does what you com-
mand, no more, no less. You may reload that window u§eg and the new file should appear.

The right button (button-3) is used to look for things. A click with the button on a file name would open that
file in the editor. A click on a word would look for it (i.e., search for it) in the text shown in the window.

Keyboard input in acme goes to the window where the pointer is pointing at. To type at a tag line, you must
place the pointer on it. To type at the body of a window, you must point to it. This is cgllgdt to typé&. Note
that in rio things are different. Input goes to the window where you did click last. This is ¢alie to typ€'.

Although you can use acme to execute commands, we will be using a rio window for that in this book, to
make it clear when you are executing commands and to emphasize that doing so has nothing to do with acme.

But to try it at least once, typdate anywhere in acme (e.g., in a tag line, or in the window showing your
home directory. Then execute it (again, by a click with button-2 on it). You will see how the outplatef is
shown in a new window. The new window will be callégsr/nemo+Errors . Acmes creates windows with
names terminated irErrors to display output for commands executed at the directory whose name precedes
the+Errors . In this case, to display output for commands executddsatnemo . If you do not know what
“at’ means in the last sentences, don’t worry. Forget about it for a while.

There is a good description éfcme in [5], although perhaps a little bit too detailed for us at this moment.
It may be helpful to read it ignoring what you cannot understand, and get back to it later as we learn more things.

1.5. Obtaining help

Most systems include their manual on-line, for users to consult. Plan 9 is not an exception. The Plan 9 manual is
available in several forms. From the web, you can conrsiyit//plan9.bell-labs.com/sys/man for

a web version of the manual. At Rey Juan Carlos University, we suggest you use
http://plan9.lsub.org/sys/man instead, which is our local copy.

-8-

And there is even more help available in the system! The directsyg/doc , also available at
http://plan9.bell-labs.com/sys/doc , contains a copy of most of the papers relevant for the system.
We will mention several of them in this book. And now you know where to find them.

The manual is divided in sections. Each manual page belongs to a particular section depending on its topic.
For us, it suffices to know that section 1 is for commands, section 8 is for commands not commonly used by users
(i.e., they are intended to administer the system), and section 2 is for C functions and libraries. To refer to a man-
ual page, we use the name of the page followed by the section between parenthesa;raglih This page
refers to a command, because the section is 1, and the name for the page (i.e., the name of the comenaad) is

From the shell, you can use thean command to access the system manual. If you don’t know how to use
it, here is how you can learn to do it.

man man

Asks the manual to give its own manual page.

;. man man
MAN(1) Plan9 — 4th edition MAN(1)

NAME
man, lookman, sig - print or find pages of this manual

SYNOPSIS
man [-bnpPStw] [section ...] title ...

lookman key ...
sig function ...

DESCRIPTION
Man locates and prints pages of this manual named title in
the specified sections. Title is given in lower case. Each

As you can see, you can give ti@anthe name of the program or library function you are interested in. It displays

a page with useful information. If you are doing this in the shell, you can use the down arrow Keyo page

down the output. To read a manual page found at a particular section, you can type the section number and the
page name after thman command, like in

man 1 Is

If you look at the manual page shown above, you can see several sectionsynbpsisection of a manual page

is a brief indication on how to use the program (or how to call the function if the page is for a C library). This is
useful once you know what the program does, to avoid re-reading the page again. In the synopsis for commands,
words following the command name are arguments. The words between square brackets are optional. They are
called options. Any option starting with ” represents individual characters that may be giveffegs to change

the program behavior. So, in our last examflendls areoptionsfor man, corresponding tgectionandtitle in

the synopsis omarn(1).

The descriptionsection explains all you need to know to use the program (or the C functions). It is sug-
gested to read the manual page for commands the first time you use them. Even if someone told you how to use
the command. This will always help in the future, when you may need to use the same program in a slightly dif-
ferent way. The same happens for C functions.

The sourcesection tells you where to find the source code for programs and libraries. It will be of great
value for you to read as much source as you can from this system. Programming is an art, and the authors of this
system dominate that art well. The best way for you to quickly become an artist yourself is to study the works of
the best ones. This is a good opportunity.

From time to time you will imagine that there must be a system command to do something, or a library

function. To search for it, you may udeokman , as the portion oman(1) reproduced before shows. Using
lookman is to the manual what using search engines (e.g., Google) is to the Web. You don’t know how to use

-9-

the manual if you don’t know how to search it well.

Another command that comes with the manuaics . It displays thesignature i.e., the prototype for a C
function documented in section 2 of the manual. That is very useful to get a quick reminder of which arguments
receives a system function, and what does it return. For example,

sig chdir
int chdir(char *dirname)

When a new command or function appears in this book, it may be of help for you to take a look at its manual
page. For exampléntro(1) is a kind introduction to Plan 9. The manual paig€1) describes how to use the win-

dow system. The meaning of all the commandsiin menus can be found there. In the same wagmél)
describes how to usscme, andrc(1) describes the sheli; .

If some portions of the manual pages seem hard to understand, you might ignore them for the time being.
This may happen for some time while you learn more about the system, and about operating systems in general.
After completing this course, you should have no problem to understand anything said in a manual page. Just
ignore the obscure parts and try to learn from the parts you understand. You can always get back to a manual page
once you have the concepts needed to understand what it says.

1.6. Using files

Before proceeding to write programs and use the system, it is useful for you to know how to use the shell to see
which files you created, search for them, rename, and remove them, etc.

When you open a windowijo starts a shell on it. You can type commands to it, as you already know. For
example, to executdate from the shell we can simple type the command name and press return:

. date
SatJul 801:13:54 MDT 2006

In what follows, we do not remind you to press return after typing a command. Now we will use the shell in a
window to play a bit with files. You can list files usirlg :

s
bin
lib
tmp

’

There is another commanid, (list in columns), that arranges the output in multiple columns, but is otherwise the
same:

;e
bin lib tmp

If you want to type several commands in the same line, you can do so by separating them with a semicolon. The

only “; " we typed here is the one betwedgite andlc . The other ones are the shell prompt:

. date; Ic
SatJul 801:18:54 MDT 2006
bin lib tmp

’

Another convenience is that if a command is getting too long, we can type a backslash and then continue in the
next line. When the shell sees the backslash character, it ignores the start of a new line and pretends that you typed
a space instead of pressing return.

-10 -

date ; |
5 date ; |
5 date
SatJul 801:19:54 MDT 2006
SatJul 801:19:54 MDT 2006
SatJul 801:19:54 MDT 2006

The double semicolon that we get after typing the backslash and pressing return is printed by the shell, to prompt
for the continuation of the previous line (prompts might differ in your system). By the way, backslash,

called anescape charactebecause it can be used to escape from the special meaning that other characters have
(e.q., to escape from the character that starts a new line).

We can create a file by using acme, as you know. To create an empty file, we carualse, and theric
to see our outcome.

. touch hello
o Ie
bin hello lib tmp

’

Thelc command was not necessary, of course. But that lets you see the outcome of exetdng In the
following examples, we will be doing the same to show what happens after executing other commands.

Here, we gave aargument to thetouch commandhello . Like functions in C, commands accept argu-
ments to give‘parametersto them. Command arguments are just strings. When you type a command line, the
shell breaks it into words separated by white space (spaces and tabs). The first word identifies the command, and
the following ones are the arguments.

We can asks to give a lot of information aboutello . But first, lets list just that file. As you seés
lists the files you give as arguments. Only if you don’t supply a file name, all files are listed.

Is hello
hello

3

We can see the size of the file we created givingption to Is . An option is an argument that is used to change
the default behavior of the command. Some options specify cefttays to adjust what the command does.
Options that specify flags always start with a dash sfgri, The option-s of Is can be used to print the size
along with the file name:

. Is-s hello
0 hello

’

Touch created an empty file, therefore its size is zero.

You will be creating files using acme. Nevertheless, you may want to copy an important file so that you
don't loose it by accidents. We can uge to copy files:

cp hello goodbye
;e
bin goodbye hello lib tmp

We can now get rid ofiello and remove it, to clean things up.
. rm hello
;e
bin goodbye lib tmp

Many commands that accept a file name as an argument also accept multiple ones. In this case, they do what they
know how to do to all the files given:

-11 -

;e
bin goodbye lib tmp
;. touch mary had a little lamb
;e
a goodbye lamb little tmp
bin had lib mary
rm little mary had a lamb
;I
bin goodbye lib tmp

Was rm very smart? No. Form, the names you gave in the command line were just names for files to be
removed. It did just that.

A related command lets you rename a file. For example, we can regapabye to hello again by using
mv (move):

;. mv goodbye GoodBye
;e
GoodBye bin lib tmp

Let's remove the new file.

;. rm goodbye
rm: goodbye: 'goodbye’ file does not exist

What? we can see it! What happens is that file names are case sensitive. This me@uotiite, goodbye |,
andGOODBYEre entirely different names. Because could not find the file to be removed, it printed a message
to tell you. We should have said

;. rm GoodBye
;e
bin lib tmp

In general, when a command can do its job, it prints nothing. If it completes and does not complaint by printing a
diagnostic message, then we know that it could do its job.

Some times, we may want to remove a file and ignore any errors. For example, we might want to be sure
that there is no file namegloodbye , and would not want to see complaints froam when the file does not exist
(and therefore cannot be removed). Hagfor rm achieves this effect.

rm goodbye
rm: goodbye: 'goodbye’ file does not exist
;. rm -f goodbye

Both command lines achieve the same effect. Only that the second one is silent.

1.7. Directories

As it happens in Windows and most other systems, Plan Ydiders But it uses the more venerable hame
directory for that concept. A directory keeps several files together, so that you can group them. Two files in two
different directories are two different files. This seems natural. It doesn’t matter if the files have the same name. If
they are at different directories, they are different.

Directories may contain other directories. Therefore, files are arranged in a tree. Indeed, directories are also files.
A directory is a file that contains information about which files are bounded together in it, but that's a file any-
way. This means that the file tree has only files. Of course, many of them would be directories, and might contain
other files.

Figure 1.5 shows a part of the file tree in the system, relevant for user Nemo. You see now that the files
bin , lib , andtmp files that we saw in some of the examples above are kept within a directory oelled To
identify a file, you name the files in the path from the root of the tree (calledh to the file itself, separating
each name with a slash, character. This is called@ath. For example, the path for the fildd shown in the

-12 -

/

/N

386 usr tmp

/N

nemo glenda mero

/TN

bin lib tmp

Figure 1.5: Some files that user Nemo can find in the system.

figure would be/usr/nemo/lib . Note how/tmp and/usr/nemo/tmp are different files, depite using the
nametmp in both cases.

The first directory at the top of the tree, the one which contains everything else, is caliemdtitirectory
(guess why?). It is named with a single slash,

o Is/

386

usr

tmp

...other files omitted...

That is the only file whose hame may have a slash on it. If we allowed using the slash within a file name, the sys-
tem would get confused, because it would not know if the slash is part of a name, or is separating different file
names in a path.

Typing paths all the time, for each file we use, would be a burden. To make things easier for you, each pro-
gram executing in the system has a directory associated to it. It is said that the program is working in that direc-
tory. Such directory is called theurrent directory for the program, or thevorkingdirectory for the program.

When a program uses file names that are paths not starting wittese paths are walked in the tree relative
to its current directory. For example, the shell we have been using in the previous examplesrimeino as
its current directory. Therefore, all file names we used were relativesignemo . This means that when we
usedgoodbye , we were actually referring to the fileisr/nemo/goodbye . Such paths are calle@lative
paths. By the way, paths starting with a slash, i.e., from the root directory, are aiigolute paths

Another important directory igusr/nemo , it is called thehomedirectory for the user Nemo. The reason
for this name is that Nemo'’s files are kept within that directory, and because the shell started by the system when
Nemo logs in (the one that usually runs the window system), is using that directory initially as its current direc-
tory. That is the reason why all the (shells running at) windows we open inhave/usr/nemo as their initial
current directory. What follows is a simple way to know which users have accounts in the system:

lc /usr
esoriano glenda nemo mero paurea

’

There is an special file name for the current directory, a single“dét: Therefore, we can do two things to list
the current directory in a shell

-13 -

;e
bin lib tmp
;e
bin lib tmp

’

Note the dot given as the file to list to the second command. Wéeor Ic are not given a directory name to

list, they list the current directory. Therefore, both commands print the same output. Another special name is
“.. 7, called dot-dot. It refers the parent directory. That is, it walks up one element in the file tree. For example,
/usr/nemol.. is/usr , and/usr/nemol/../.. is simply/ .

To change the current directory in the shell, we can usedthéchange dir) command. If we give no argu-
ment tocd, it changes to our home directory. To know our current working directory, the compwddprint
working directory) can be used. Let's move around and see where we are:

cd
;o pwd
/usr/nemo
;o cd/; pwd
/
;. cd usr/nemo/lib ; pwd
/usr/nemol/lib
cd../.; pwd
lusr

This command does nothing. Can you say why?
;ocd.

’

Now we know which one is the current working directory for commands we execute. But, which one would be the
working directory for a command executed usamgme? It depends. When you execute a commanadme, its
working directory is set to be that shown in the window (or containing the file shown in the window). So, the
command we executed time ago in taeme window for /Jusr/nemo had/usr/nemo as its working direc-

tory. If we execute a command in the window for a filesr/nemo/newfile , its working directory would be
also/usr/nemo

Directories can be created withkdir (make directory), and because they are files, they can be also removed
with rm. Although, because it may be dangeraus, refuses to remove a directory that is not empty.

. cd
mkdir dir
N o}
bin dir lib tmp
;ormdir
N o4

bin lib tmp

The commandny, that we saw before, can move files from one directory to another. Hence its name. When the
source and destination files are within the same directomysimply renames the file (i.e., changes the name for
the file in the directory).

-14 -

touch a
Ic
bin lib tmp
mkdir dir
Ic

VR

bin dir lib tmp
mv a dir/b
;I
bin dir lib tmp
o ledir
b

R

Now we have a problents can be used to list a lot of information about a file. For example, fflagsksls to
print the name of the user who last modified a file, along with the file name. Suppose we want to know who was
the last user who created or removed a fileliat . We might do this, but the output is not what we could perhaps
expect:

v Is-mdir

[nema] dir/b

’

The output refers to fild, and not todir , which was the file we were interested in. The problem is that
when given a directory name, lists its contents. Optidnasksls not to list the contents, but the precise file we
named:

. Is-md dir

[nemo] dir

Like other commands;p works with more than one file at a time. It accepts more than one (source) file name to
copy to the destination file name. In this case it is clear that the destination must be a directory, because it would
make no sense to copy multiple files to a single one. This copies the two files named to the current directory:

cp /LICENSE /NOTICE .
N o}
LICENSE NOTICE bin dir lib tmp

1.8. Files and data

Like in most other systems, in Plan 9, files contain bytes. Plan 9 does not know (nor cares) about what is in a file.
It just provides the means to let you create, remove, read, and write files. If you store a notice in a file, it is you
who knows that it is a notice. For Plan 9, that is just bytes. We cacaisqcatenate) to display what is in a file:

; cat/NOTICE
Copyright © 2002 Lucent Technologies Inc.
All Rights Reserved

This program reads the files you name and prints their contents. Of course, if you hame just one, it prints just its
content. If youcat a very long file in a Plan 9 terminal, beware that you might have to press the down arrow key
in your keyboard to let the terminal scroll down.

What is stored atNOTICE? We can see a dump of the bytes kept within that file using the progdam
(hexadecimal dump). This program reads a file and writes its contents so that it is easy for us to read-bOption
asksxd to print the contents as a series of bytes:

- 15 -

;. xd-b/NOTICE

0000000 43 6f 7079726967 68 74 20 c2 a9 20 32 30 30
0000010 32 20 4c 75 63 65 6e 74 20 54 65 63 68 6e 6f 6C
0000020 6f 67 69 65 73 20 49 6e 63 2e Oa 41 6¢ 6C 20 52
0000030 696768 7473205265 736572766564 0a
000003f

The first column in the program output shows the offset (the position) in the file where the bytes printed on the
right can be found. This offset is in hexadecimal (we write hexadecimal numbers startin@xéts done in C).

For example, the byte at position 0x10, which is the byte at position 16 (decimal) has the value 0x32. This is the
17th byte! The first byte is at position zero, which makes arithmetic simpler when dealing with offsets.

So, why doegat display text? It's all numbers. The prograrat reads bytes, and writes them to its out-
put. Its output is the terminal in this case, and the terminal assumes that everything it shows is just text. The text
is represented using a binary codification known as UTF-8. This format enocodles(i.e, characters, kanjis, and
other glyphs) as a sequence of bytes. For most of the characters we use, UTF-8 uses exactly the same format usec
by ASCII (another standard that codifies each character using a single byte). The program implementing the ter-
minal (the window) decodes UTF-8 to obtain the runes to display, and renders them on the screen.

We can askd to do the same for the file contents. Adding optian, the program prints the character for
each byte when feasible:

;. xd-b-c/NOTICE
0000000 43 6f7079 726967 68 74 20 c2 a9 20 32 30 30

0 C o py r i g h t c2a9 2 0 0
0000010 3220 4c 75 63 65 6e 74 20 54 65 63 68 6€ 6f 6¢

10 2 L uc e nt T e ¢c h n o |
0000020 6f67 69 65 73 20 49 6e 63 2e 0a 41 6¢ 6C 20 52

20 o g i e s I n ¢c .\n A | | R
0000030 6967 687473205265 736572766564 0a

30 i g h t s R e s e r v e d\n
000003f

Here we see how the value 0x43 represents the chardterlf you look after the textCopyright , you see
0Oxc2 0xa9, which is the UTF-8 representation for fi@& sign. This program does not know and all it can do is
print the byte values.

Another interesting thing is shown near the end of each line in the file. After the text in the first line, we see
a“\n ”. That is a byte with value OxO0a. The same happens at the end of the second line (the last line in the file).
The syntaX\n ” is used to represenbntrol characters, i.e., characters not to be printed as text. The character
is just a OxOa byte stored in the file, bxd printed it as\n to let us recognize it. This syntax is understood by
many programs, like for example the C compiler, which admits it to embed control characters in strings (like in
"hello\n").

Control characters have meaning for many programs. That is wayst#eyto do things (but of course they
do not!). For examplef\n ” is the new-linecharacter. It can be generated using the keyboard by pressing the
Returnkey. When printed, it causes the current line to terminate and the following text will be printed starting at
the left of the next line.

If you compare the output afd and the output otat you will see how each one of the two lines in
/INOTICE terminates with arend of linecharacter that is preciselp . That is the convention in Plan 9 (and
UNIX). The new line character terminates a line only because programs in Plan 9 (and UNIX) follow the conven-
tion that lines terminate with I character. The terminal shows a new line when it finda a programs that
read files a line at a time decide that they get a line when aharacter is found, etc. It is just a convention.

Windows (and its predecessor MSDOS) use a different format to encode text lines, and terminates each line
with two charactersi\r\n ” (or carriage-return andnew-ling. This comes from the times when computers used
a tele-typewriter (tty) machine for console output. The former chardctenmakes the carriage in the typewriter
return to its left position. We have to admit, there are no typewriters anymore. But the charaotekes the fol-
lowing text appear on the left of the line. Thre character advances the carriage (sic) to the next line. That is why
\n is also known as théne-feedcharacter. A consequence is that if you display in Plan 9 a Windows text file,
you will see one little control character at the end of each line:

-16 -

cat windowstext
This is one line
and this is another

o

’

That is the\r . Going the other way around, and displaying in Windows a text typed in Plan 9, may produce this
output

This is one line
and this is another

because Windows misses the carriage-return character.

Now that we can see the actual contents of a file, there is another interesting thing to note. There is no EOF
(end of file) character! Such thing is an invention of some programming languages. For Plan 9, the file terminates
right after the last byte that has been stored on it.

Another interesting control character is tadulator, generated pressing tA@b key in the keyboard. It is
used in text files to cause editors and terminals to advance the text following the tabulator character to the next
tab-stop On typewriters (sorry once more), the carriage could be quickly advanced to particular columns (called
tab-stops) by hitting &abkey. This control character achieves the same effect. Of course, there is no carriage any
more andTab advances to, say, the next column that is a multiple of 8 (column 8, 16, etc.). This value is called
thetab-width The filescores contains several tabs.

. cat scores

Real Madrid 1

Barcelona 0

. Xxd -c scores

0000000 R e a | M a d r i dit 1\n B a
0000010 r ¢c e | o n alt O\

000001a

Note how in the output focat , the terminal tabulates the scores to form a column after the names. The fumber

is shown right below the numbér. However, the output fromd reveals that there are no spaces adffedrid
andBarcelona . Following each name, there is a singfle character, which is the notation féab. In general,

\t is used to tabulate data and to indent source code. The appearance of the output text depends on the tab width
used by the editor or the terminal (which was 8 characters in our case). The net effect is that it is a bad idea to mix
spaces and tabs to indent code or tabulate data. Depending on the editor, a single tab may displace the following
text 8, 4, 2, or any other number of characters (it depends on where the editor considers the tab stop to be).

The point is that characters lika , \r , and\t are control characters, with special meaning, just because
there are programs that use them to represent actions and not to represent literal text. Table 1.1 shows some usua
control characters and their meaning.

[(Byte value Character Keyboard Description O
(04 control-d end of transmission (EO
Cos \b Backspace remove previous charact
Cho \t Tab horizontal tabulaton U
a \n Return line feed E
d \r carriage return 0
b Esc escape [

Table 1.1:Some control characters understood by most systems and programs.

The table shows the usual escape syntax (a backslash and a character) used by most programs to represen
control characters (including the C compiler), and how to generate the characters using the keyboard. Not all the
control characters are shown and not all the cells in the table contain information. We included just what you
should know to avoid discomfort while using the system.

To summarize, files contain just data that has no meaning per-se. Only programs and users give meaning to
data. This is what you could see here.

-17 -

1.9. Permissions

Each file in Plan 9 can be secured to provide some privacy and restrict what people can do with the file. The secu-
rity mechanism to control access to files is calledamgess control list This is like the list given to security
guards to let them know who are allowed to get into a party and what are they allowed to do inside. In this case,
the system is the security guard, and it keeps an access control list (or ACL) for each file. To be more precise, the
program that keeps the files, i.e., the file server, keeps an ACL for each file.

The ACL for a file describes if the file can be read, can be written, and can be executed. Who can be
allowed by the ACL to do such things? The file server keeps a list of user names. You had to give your user name
to log into the system and access your files in the file server. Depending on your user name, you may be allowed
or not to read, write, and execute a particular file. It depends on what the file’'s ACL says.

Because it would be too inconvenient to list these permissions for all the users in the ACL for each file, a
more compact representation is used. Each file belongs to a user, the one who created it. And each user is entitled
to agroup of users. The ACL lists read, write, and execute permissions for the owner of the file, for any other
user in the group of users, and for the rest of the world. That is just nine permissions instead of a potentially very
long list.

In the file server, each user account can be used as a group. This means that your user name is also a group
name. The group that contains just you as the only member. This is the outputndien called to print long list-
ing for a file. It list permissions and ownership for the file:

;o cd
. Is -l lib/profile
--rwxrwxr-x M 19 nemo nemo 1024 May 30 16:31 lib/profile

’

You see a user name listed twice. The first name is the owner for the filenkrn® in this case. The second
name is the user group for the file, which is afsmo in this case. This group contains a single usemao.

The initial “- 7 printed byls indicates that the file is a not a directory. For directorieSdawould be
printed instead. The following characters show the ACL for the file, i.e., its permissions.

There are three groups ofix permissions, each one determining if the file can be reddwritten) and
executedX). The firstrwx group refers to the owner of the file. For exampley, ifs set on it, the owner of the
file can read the file. As you see fbb/profile , nemo (its owner) can read, write, and execute this file.

The secondwx group determines permissions applied to any other user who belongs to the group for the
file. In this case the group is alseemo, which contains just this user. The lastx group sets permissions
applied to any other user. For exampiepriano can read and execute this file, but he cannot write it. The per-
missions for him (not the owner, and not in the group)raxe, which mean this.

Because it does not makes sense to grant the owner of a file less permissions than to others, the file owner
has a particular permission if it is enabled for the owner, the group, or for the others. The same applies for mem-
bers of the group. They have permission when either permissions for the group or permissions for others grant
access.

In general, read permission means permissioadeesshe file to consult its contents. Write permission
means permission to modify the file. This includes not just writing the file, but also truncating it. Execute permis-
sion means the right to ask a Plan 9 kernel to execute the file. Any file with execution permission is an executable
file in Plan 9.

For directories, the meaning of the permissions is different. For a directory, read permission means permis-
sion tolist the directory. Because the directory has to be read to list its contents. Write permission means permis-
sion tocreateandremovefiles in the directory. These operations require writing the directory contents. Execute
permission means the right to enter, i.e.¢tbinto it.

When there is a project involving several users, it is convenient to create a directory for the files of the pro-
ject and to create a group of users for that project. All files created in that directory will be entitled to the group of
users that the directory is entitled to. For example, this directory keeps documents for a proje®leallBd

; Is-Id docs
d-rwxrwxr-x M 19 nemo planb 0 Jul 9 21:28 docs

If we create a file in that directory, permissions get reasonable:

-18 -

cd docs
. touch memo
. Is-Ilmemo
--rw-rw-r-- M 19 nemo planb 0 Jul 9 21:30 memo

The group for the new file iplanb , because the group for the directory was that one. The file has write permis-
sion for users in the group because that was the case for the directory.

To modify permissions, thehmod (change mode) command can be used. Its first argument grants or revo-
cates permissions. The following arguments are files where to perform this permission change. For example, to
grant execution permission for filgrogram , you may execute

;. chmod +x program

To remove write permission for an important file that is not to be overwritten, you may

chmod -w file

The + sign grants permission. The sign removes it. The characters following this sign indicate which permis-
sions to grant or remove. For examptex grants both read and execution permissions.

If you want to change the permissions just for the owner, or just for the group, or just for anyone else, you
may specify this before the or - sign. For example,

chmod g+r docs

grants read permission to users in the group. Permissions for the owner and for the rest of the world remain unaf-
fected. In the same way+r would grant read permission for the owner, ard would do the same for others.

In some cases, for example, in C programs, you are going to have to use an integer to indicate file permis-
sions. There are three permissions repeated three times, once for the user, once for the group, and once for others
This is codified as nine bits. Using a number in octal base, which has three bits for each digit, it is very simple to
write a number for a given permission set.

For example, consider the AQwxr-xr-x . That is three bits for the user, three for the group, and three
for others. A bit is set to grant permission and clear to deny it. For the user, the bits would be 111, for the group,
they would be 101, and for the others they would also be 101.

You know that 111 (binary) is 7 decimal. It is the same in octal. You also know that 101 (binary) is 5 deci-
mal. It is the same in octal. Therefore, an integer value representing this ACL would be 0755 (octal). We use the
same format used by C to write octal numbers, by writing an initial O before the number. Figure 1.6 depicts the
process. Thus, the command

;. chmod 755 afile

would leaveafile with rwxr-xr-x ~ permissions.

L

N-—p — =

Figure 1.6: Specifying permissions as integers using octal numbers.

-19 -

1.10. Writing a C program in Plan 9

Consider the traditiondltake me to your leadérlprograni, that we show here. We typed it into a file named
take.c . When we show a program that is stored in a particular file, the file name is shown in a little box before
the file contents.

take.c
#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

print(“take me to your leader'\n");
exits(nil);

}

This program is just text stored in a file. To execute it, we must compile it and then link the program with what-
ever libraries are necessary (in this case, the C library). There is one command for each task:

;. 8c take.c # compile it
; 8ltake.8 # link the resulting object

’

As you see, the shell ignores text following theign. That is the line-comment characterfor. That is usual in
most shells found in other systems, like UNIX. The C compiler for Intel architectugss {80x86 compiler) and

8l is the linker (In Plan98I is called doader, because it prepares the way for loading the resulting program into
memory). Obiject files generated I8¢ use the extensior8 , to make it clear that the object is for an Intel (it
reminds of 8086). The binary file produced by linking the object file(s) and the libraries implied is riamed ,
when usingl . This binary has execute permission and can be executed.

In Plan 9 there are many C compilers. One for each architecture where the system runs. And, as it could be
expected, each compiler has been compiled for all the architectures where the system runs. For example, for the
Arm, the compiler issc and the linkesl . We have these programs available for all the architectures (e.g., PCs,
and Arms). To compile for one architecture you only have to use the compiler that generates code for it. But you
can compile from any other architecture because the compiler itself is available for all of them.

For the Arm, the files generated by the compiler and the linker wouléhke5 and5.out . This makes
it easy to compile a single program for execution at different platforms in the same directory. We still know which
file is for which architecture. Now you may have the pleasure of executing your first hand-made Plan 9 program

, S.out
take me to your leader!

The Plan 9 C dialect is not ANSI (nor ISO) C. It is a variant implemented by Ken Thompson. One of the authors
of UNIX. It has a few differences with respect to the C language you can use in other system. You already noticed
some. Most programs include just two filash , which contains machine and system definitions, Hoclh

which contains most of the things you will need. The header files include a hint for the linker that is included in
the object file. For example, this is the first line in the flilec.h

#pragma lib "libc.a"

The linker uses this to automatically link against the libraries with headers included by your programs. There is
no need to supply a long list of library names in the command lin8lfdr

There are several flags that may be given to the compiler to make it more strict regarding the source code. It
is very sensible to use them always. T8eél) manual page details them, and we hope you just take them as a cus-
tom:

! Because we talk about Plan 9, this program is more appropriate than the one you are thinking on. If you don’t know why, you did not use Ii
to discover why this system has this name.

- 20 -
8c -FVw take.c

The binary file generated I8! is 8.out , by default. But it may be more convenient to give a better name to this
file. This can be done with the option for the linker. If we use a file name likeke , the file should be kept at

a directory where it is clear which architecture it has been compiled for. For example, for PCs, binaries are kept at
/386/bin or at/usr/nemo/bin/386 for the usememo. This is what is done when the programiristalled

for people to use. People enjoy typing just the program name.

But otherwise, it is a custom to generate a binary file with a name that states clearly the architecture it
requires. Think that you may be compiling a program today while using a PC as a terminal. Tomorrow morning
you might be doing the same on an Alpha. You wouldn't like to get confused.

The tradition to name the binary file is to use the narmut if the directory contains the source code for
just one program, or a name lilgstake if there are multiple programs that can be compiled in the same direc-
tory. This is our case.

In this text we will always compile for the same architecture, an Intel PC, unless said otherwise, and gener-
ate the binary in the directory where we are working. For example, for our little program, this would be the com-
mand used to generate its binary:

. 8/ -0 8.take take.8

For the first few programs, we will explicitly say how we compiled them. Later, we start assuming that you
remember that the binary for a file namiadke.c was compiled and linked using

. 8c -FVw take.c
. 8/ -0 8.take take.8

and the resulting executable isGatake

There is an excellent paper for learning how to use the Plan 9 C compiler [6]. It is a good thing to read if
you want to learn more details not described here about how to use the compiler.

1.11. The Operating System and your programs

So far so good. But, what is the actual relation between the system and your programs? How can you understand
what happens? You will see that things are simpler than you did image. But let’s revisit what happens to your pro-
gram after you write it, before bringing the operating system in the play. We can use some commands to do this.
By now, ignore what you cannot understand.

. Is -l take.c take.8 8.take

--rwxr-xr-x M 19 nemo nemo 36280 Jul 2 18:46 8.take
--rw-r--r-- M 19 nemo nemo 388 Jul 2 18:46 take.8
--rw-r--r-- M 19 nemo nemo 110 Jul 2 18:46 take.c

The commands tells us thatake.c has 110 bytes in it. That is the text of our program. Aercompiled it,

the resulting object fildake.8 has just 388 bytes in it. The contents are machine instructions for our program
plus initial values for our variables (e.g., the string printed) and some other information. If we take this object file,
and give it to8l to link it against the C library and produce the binary Bligake , we get a file with 36.280
bytes on it.

Let's try to gather more information about these files. The commmandname list) displays the names of
symbolg(i.e., procedure names, variables) that are contained or required by our object and executable files.

=21 -

nm take.8
U exits
T main
U print
. nm 8.take
... more output...
1131 T exits
1020 T main
118d T print
... more output...

’

It seems thatake.8 contains a procedure calledain . We call text to binary program code, anthprints aT

before names for symbols that are text and are contained in the object file. Besides, our object file requires at
least two other proceduresxits , andprint to build a complete binary program. We know this because
printsU (undefined, but required) before names for required things.

If we look at the output for the executable file, you will notice that the three procedures are in there. Further-
more, they now have addresses! The codesfits is at address 1131 (hexadecimal), and so on. The code that
is now linked to our object file comes from the C library. It was included because we included the library’s
headeribc.h in our program and called some functions found in that library. The lirller,knew where to
find that code.

But there is more code that is used by our program and is not contained in the binary file. When our program
callsprint , this function will write bytes to the output (e.g., the window). But the procedure that knows how to
write is not in our program, nor is in the C library. This procedure is within the operating system kernel. A proce-
dure provided by the system is known asyatem call calling such procedure is known as making a system call.

Your program Other program

procedure
call

print() { ...} main() { ...}
\

system call

main() { ...}

System kernel

write() { ...}

Figure 1.7: System calls, user programs, and the system kernel.

Figure 1.7 depicts two different programs, e.g., the one you executed before and another one, and the sys-
tem kernel. Those programs are executing, not just files sitting on a disk. Your program cafitdiescode it
needs to execute, including portions of the C library. Yowain procedure callprint , with a local procedure
call. The code for print was taken from the C library and linked into your prograr@l by To perform its job,
print calls another procedurgyrite , that is contained within the operating system kernel. That is a system
call. As you can see in the figure, the other program might perform its own system calls as well.

In general, you don’t mind if a particular function is a system call or is defined in the standard system
library (the C library). Many functions that are part of the interface of the system are not actual system calls (i.e.,
are not implemented within the kernel), but library functions. For example, the manual pagad®) gives
multiple functions that can be used to read and write a file. However, only one, or maybe a few, are actual system
calls. The others are implemented within the C library in terms of the real system call(s). Going from one version
of the system to another, we may find that an old system call is now a library function, and vice-versa. What mat-
ters is that the function is part of the programmer’s interface for a system provided abstraction. Indeed, in what
follows, we may refer to functions within the C library as system calls. Be warned. In any case, the entire section

-22 -

2 of the manual describes the functions available.
As a remark, programmer’s interfaces are usually called APIs, for Application Programmer’s Interface.

1.12. Where are the files?

If you remember, we said that your files are not kept in the machine you use to execute Plan 9 commands and pro-
grams. Plan 9 calls the machine you uségraninal and the machine where the files are kepfileaserver The

Plan 9 that runs at your terminal lets you use the files that you have available at other places in the network, and
there can be many of them. For simplicity, we assume that all your files are stored at a single machine behaving as
the file server.

How does this work? What we said about how a program performs a system call to the kernel, to write into a
file, is still true. But there was something missing in the description we made in the last section. To do the write
you requested, your Plan 9 kernel is likely to need to talk to another machine. Most probably, your terminal does
not have the file, and must get in touch with the file server to ask him to write the file.

Figure 1.8 shows the steps involved for doing the samet shown in the last section. This time, it
shows how the file server comes into play, and it shows only your program. Other programs running at your ter-
minal would follow a similar path.

Your program

main(){ 1.call Print({

} 6. return }

5. return |2. system call
Your terminal’s kernel File server

write(){ write(){

3. message: write!

}

Figure 1.8: Your system kernel makes a remote procedure call to write a file in the file server.

1 Your program makesprocedure callto the functiorprint in the C library.

2 The function makes system calto the kernel in your machine. This is similar to a procedure call, but calls
a procedure that is implemented by your kernel and shared among all the programs in your terminal.
Because the kernel protects itself to prevent your program from calling arbitrary procedures in the kernel, a
software interrupt is the mechanism used to perform this call. This is catleghaand is mostly irrelevant
for you now.

3 The code for thevrite function (the system call) in the kernel, must send a message through the network
to the machine that keeps the file, to the file server. This message contains a request to perform the write
operation and all the information needed to perform it, e.g., all the values and data you supplied as parame-
ters for the write.

4 The remote machine, the file server, performs the operation and replies sending a message through the net-
work back to your terminal. The message reports if the operation was completed or not, and contains any
output result for the operation performed, e.g., the number of bytes that could be written into the file.

5 Your kernel does some bookkeeping and returns to your system call the result of the operation (as reported
by the other machine).

6 The library function returns to your program when everything was printed.

Steps 3 and 4 are calledreamote procedure call This is not as complex as it sounds, but it is not a procedure

call either. A remote procedure call is a call made by one program to another that is at a different place in the net-
work. Because your processor cannot call procedures kept at different machines, what the system does is to send a
message with a request to do something, and to receive a reply back with any result of interest.

-23-

1.13. The Shell, commands, binaries, and system calls

It is important to know how these elements come into play. As you know, the operating system provides the
implementation of several functions, known as system calls. These functions provide the interface for the abstract
data types invented by the system, to make it easier to use the computer.

In general, the only way to use the system is to write a program that makes system calls. However, there are
many programs already compiled in your system, ready to run. To provide you some mean to run them, another
program is provided: the shell. When you type a command name at the shell prompt, the shell searches for a file
with the same name located at a directory that, by convention, keeps the executable files for the system. If the
shell finds such file, it asks the system to execute it.

\
’ read execute
7 cﬁn\VYa dfi hin/ls
U

Z v

system kernel

Figure 1.9: Executing commands.

Figure 1.9 shows what happens when you tigeat the shell prompt. First, the shell reads your command
line. It looks for a file namedbin/ls , and because there is such file, the shell executes it. To read the com-
mand line, and to execute the corresponding file for the command you typed, the shell uses system calls. Only the
operating system knows what it means‘tead and to“executé a file. Remember, the hardware knows nothing
about that!

The consequence of your command request is that the program contaibédlsn is loaded into mem-
ory by the operating system and gets executed as a new program. Note that if you create a new executable file,
you have created a new command. All you have to do to run it is to give its (file) name to the shell.

When you run a window system, things are similar. The only difference is that the window system must read
input from both the mouse and the keyboard and writes at a graphics terminal instead of at a text display. Of
course, when the window system creates (fiayents) a new window, it has to ask the system to run a shell on
it.

1.14. The Operating System and the hardware

As you can imagine now, most of the time, the operating system is not even executing. Usually, it is your code the
one running in the processor. At least, until the point in time when your program makes a system call. At that
point, the operating system code takes control (because its code starts executing) and performs your request.

However, the hardware may also require attention from the operating system. As you know from computer
architecture courses, this is done by means of hardware interrupts. When data arrives from the network, or you hit
a keyboard key, the hardware device interrupts the processor. What happens later is that the interrupt handler runs
after the hardware saves the processor state.

The interrupt handlers are kept within the operating system kernel. The kernel contains the code used to
operate each particular device. That is calledkgice driver. Device drivers use /O instructions to operate the
devices, and the devices interrupt the processor to request the attention of their drivers. Thus, while your program
is executing, a device might interrupt the processor. The hardware saves some state (registers mostly) and the
operating system starts executing to attend the interrupt. Many times, when the interrupt has been serviced, the
operating system will return from the interruption and your code would be running again.

-24 -

You can think that the kernel is a library but not just for your programs, also for things needed to operate the
hardware. You make system calls to ask the system to do things. The hardware issues interrupts for that purpose.
And most of the time, the system is idle sitting in memory, until some one makes a call.

Problems

1 Open a system shell, execupgping to determine if all of the machines at the network 213.128.4.0 are
alive or not. To do this, you have to run these 254 commands:

ip/ping -n1213.128.4.1
i p/ping -n 1 213.128.4.2

. ip/ping -n 1 213.128.4.254

The option-n with argumentl tells ping to send just one probe and not 64, which would be its default.
2 Do the same using this shell command line:

; for (min {seq 1 254}) { ip/ping 213.128.4.$m }

This line is not black magic. You are quite capable of doing things like this, provided you pass this course.

3 Start the system shell in all the operating systems where you have accounts. If you know of a machine run-
ning an unknown system where you do not have an account, ask for one and try to complete this exercise
there as well.

4 Does your TV set remote control have its own operating system? Why does your mobile phone include an
operating system? Where is the shell in your phone?

5 Explain this:
;e
bin lib tmp
;s
Is.: '/bin/ls.’ file does not exist

6 How many users do exist in your Plan 9 system?

7 What happens if you do this in your home directory? Explain why.
; touch a
, o mvaa

8 What would happen when you run this? Try it and explain.

mkdir dir
. touch dir/a dir/b
oormdir
. mv dir tmp

9 Andwhat if you do this? Try it and explain.

. mkdir dir dir/b
. cd dir/b
corm../b

pwd

2 — Programs and Processes

2.1. Processes

A running program is called process The namgrogramis not used to refer to a running program because both
concepts differ. The difference is the same that you may find between a cookie recipe and a cookie. A program is
just a bunch of data, and not something alive. On the other hand, a process is a living program. It has a set of reg-
isters including a program counter and a stack. This means that itftas af controlthat executes one instruc-

tion after another as you know.

The difference is quite clear if you consider that you may execute simultaneously the same program more
than once. For example, figure 2.1 shows a window system with three windows. Each one has its own shell. This
means that we have three processes runfbiigrc , although there is only a single program for those pro-
cesses. Namely, that kept stored in the ide/rc . Furthermore, if we change the working directory in a shell,
the other two ones remain unaffected. Try it! Suppose that the prograkeeps in a variable the name for its
working directory. Each shell process has its cwunrent working directoryariable. However, the program had
only one such variable declared.

Figure 2.1: Three/bin/rc processes. But just ofigin/rc

So, what is a process? Consider all the programs you made. Pick one of them. When you execute your pro-
gram and it starts execution, it can rindependently of all other programs in the computer. Did you have to take
into account other programs like the window system, the system shell, a clock, a web navigator, or any other just
to write your own (independent) program and execute it? Of course not. A brain with the size of the moon would
be needed to be able to take all that into account. Because no such brains exist, operating systems provide the pro-
cess abstraction. To let you write and run one progranfarmggtabout other running programs.

Each process gets thiusion of having its own processor. When you write programs, you think that the
machine executes one instruction after another. But you always think that all the instructions belong to your pro-
gram. The implementation of the process abstraction included in your system provides this fantasy.

When machines have several processors, multiple programs can be exequéedllsl. i.e., at the same
time. Although this is becoming common, many machines have just one processor. In some cases we can find
machines with two or four ones. But in any case, you run many more programs than processors are installed.
Count the number of windows at your terminal. There is at least one program per window. You do not have that
many processors.

- 26 -

What happens is that the operating system makes arrangements to let each program execute for just some
time. Figure 2.2 depicts the memory for a system with three processes running. Each process gets its own set of
registers, including the program counter. The figure is just a snapshot made at a point in time. During some time,
the process 1 runningo may be allowed to proceed, and it would execute its code. Later, a hardware timer set
by the system may expire, to let the operating system know that the time for this process is over. At this point, the
system mayumpto continue the execution of process 2, runniag After the time for this process expires, the
system would jump to continue execution for process 3, runnimg. When time for this process expires, the
system may jump back to process 1, to continue where it was left at.

PG addl bx, di cmpl si, di |
——+-addl bx, si 3 Rio i jls label 3 Rio

subl $4, di (process #1) PC movl bx, cx (process #3)

1 movl bx, cx | —-addl bx, si
addl bx, di :
| addibx,si | Rc

——+=subl $4, di (process #2)
movl bx, cx |
L 7777777777777777777 System
Memory

Figure 2.2: Concurrent execution of multiple programs in the same system.

All this happens behind the scenes. The operating system program knows that there is a single flow of con-
trol per processor, and jumps from one place to another to transfer control. For the users of the system, all that
matters is that each process executes independently of other ones, as if it had a single processor for it.

Because all the processes appear to execute simultaneously, we say ttmycareent processes In some
cases, they will really execute arallel when each one can get a real processor. In most cases, it would be a
pseudo-parallel execution For the programmer, it does not matter. They are just concurrent processes that seem
to execute simultaneously.

In this chapter we are going to explore the process we obtain when we execute a program. Before doing so,
it is important to know what's in a program and what'’s in a process.

2.2. Loaded programs

When a program in source form is compiled and linked, a binary file is generated. This file keeps all the informa-
tion needed to execute the program, i.e., to create a process that runs it. Different parts of the binary file that keep
different type of information are called sections. A binary file starts with a few words that describe the following
sections. These initial words are called a header, and usually show the architecture where the binary can run, the
size and offset in the file for various sections.

One section (i.e., portion) of the file contains the program text (machine instructions). For initialized global
variables of the program, another section contains their initial values. Note that the systemniatioirg about
the meaning of these values. For uninitialized variables, only the total memory size required to hold them is kept
in the file. Because they have no initial value, it makes no sense to keep that in the file. Usually, some information
to help debuggers is kept in the file as well, including the strings with procedure and symbol names and their
addresses.

In the last chapter we saw homm can be used to display symbol information in both object and binary
files. But it is important to notice that only your program code knows the meaning of the bytes in the program
data (i.e., the program knows what a variable is). For the system, your program data has no niséanéygtem

-27 -

knows nothing about your program; you are the one who knows. The prognaroan display information about
the binary file because it looks at the symbol table stored in the binary for debugging purposes.

We can see this if we remove the symbol table from our binary fotdke.c program. The command
strip removes the symbol table. To find the binary file size, we can use ogticior Is, which (as you know)
lists a long line of information for each file, including the size in bytes.

Is -/ 8.take
--rwxr-xr-x M 19 nemo nemo 36348 Jul 6 22:49 8.take
; Strip 8.take
. Is -/ 8.take
--rwXr-xr-x M 19 nemo nemo 21713 Jul 6 22:49 8.take

The number after the user name and before the date is the file size in bytes. The binary file size changed from
36348 bytes down to 21713 bytes. The difference in size is due to the symbol table. And without the symbol
table,nmknows nothing. Just like the system.

nm 8.take

Well, of course the system has a convention regarding which one is the address where to start executing the pro-
gram. But nevertheless, it does not care much about which code is in there.

A program stored in a file is different from the same program stored in memory while it runs. They are
related, but they are not the same. Consider this program. It does nothing, but has a global variable of one mega-
byte.
mlobal.c

#include <u.h>

#include <libc.h>

char global[1 * 1024 * 1024];

void
main(int, char*[])
{
exits(nil);

}

Assuming it is kept aglobal.c , we can compile it and use the linker optiem to specify that the binary is to
be generated in the new fikglobal . Itis a good practice to name the binary file for a program after the pro-
gram name, specially when multiple programs may be compiled in the same directory.

. 8¢ -FWw global.c
. 8/-0 8.global global.8

;. Is -1 8.global global.8
--rwxr-xr-x M 19 nemo nemo 3380 Jul 6 23:06 8.global
--rw-r--r-- M 19 nemo nemo 328 Jul 6 23:06 global.8

Clearly, there is no room in the 328 bytes of the object file fordlabal array, which needs one megabyte of
storage. The explanation is that only the size required to hold the (not initialized) array is kept in the file. The
binary file does not include the array either (change the array size, and recompile to check that the size of the
binary file does not change).

When the shell asks the system (making a system call) to ex8altsbal , the systenoads the pro-
gram into memory. The part of the system (kernel) doing this is calleddhder. How can the system load a
program? By reading the information kept in the binary:

e The header in the binary file reports the memory size required for the program text, and the file keeps the
memory image of that text. Therefore, the system can just copy all this into memory. For a given system and
architecture, there is a convention regarding which addresses the program must use. Therefore, the system
knows where to load the program.

- 28 -

e The header in the binary reports the memory size required for initialized variables (globals) and the file con-
tains a memory image for them. Thus, the system can copy those bytes to memory. Note that the system has
no idea regarding where does one variable start or how big it is. The system only knows how many bytes it
has to copy to memory, and at which address should they be copied.

o For uninitialized global variables, the binary header reports their total size. The system allocates that
amount of memory for the program. That is all it has to do. As a courtesy, Plan 9 guarantees that such mem-
ory is initialized with all bytes being zero. This means that all your global variables are initialized to null
values by default. That is a good thing, because most programs will misbehave if variables are not properly
initialized, and null values for variables seem to be a nice initial value by default.

We saw how the programm prints addresses for symbols. Those addresses are memory addresses that are only
meaningful when the program has been loaded. In fact, the Plan 9 manual refers to the linkdoadeheThe
addresses andrtual memory addresses, because the system uses the virtual memory hardware to keep each pro-
cess in its own virtual address space. Although virtual, the addresses are absolute, and not relative (offsets) to
some particular origin. Usingm we can learn more about how the memory of a loaded program looks like.
Option-n asksnmto sort the output by symbol address.

nm -n 8.global
1020 T main
1033 T _main
1073 T atexit
10e2 T atexitdont
1124 T exits
1180 T _exits
1188 T getpid
11fb T memset
122a T lock
12e7 T canlock
130a T unlock
1315 T atol
1442 T atoi
1455 T sleep

145d T open
1465 T close
146d T read
14a0 T _tas
l4ac T pread
14b4 T etext
2000 D argv0
2004 D _tos
2008 D _nprivates
200c d onexlock
2010 D _privates
2014 d _exits
2024 B edata
2024 B onex
212c B global
10212c B end

Figure 2.3 shows the layout of memory for this program when loaded. Looking at the outpotweé can see
several things. First, the program code uses addresses starting at 0x1020 up to 0x14b4.

The last symbol in the code &text , which is a symbol defined by the linker to let you know where the
end of text is. Data goes from address 0x2000 up to address 0x10212c. There is a symbanzhlletso
defined by the linker, at the end of the data. This symbol lets you know where the end of data is. This symbol is
not to be confused witkdata , which reports the address where initialized data terminates.

In decimal, the address fend is 1.057.068 bytes! That is more than 1 Mbyte, which is a lot of memory for
a program that was kept in a binary file of 3 Kbytes. Can you see the difference?

- 29 -

Text segmerData segment BSS segment Stack segment
Program | Initialized Uninitialized
stack
text data data
0x0 etext edata end

Figure 2.3: Memory image for thglobal program.

And there is more. We did not take into account the program stack. As you know, your program needs a
stack to execute. That is the place in memory used to keep track of the chain of function calls being made, to
know where to return, and to maintain the values for function arguments and local variables. Therefore, the size
of the program when loaded into memory will be even larger. To know how much memory a program will con-
sume, us@m, do not list the binary file.

The memory of a loaded program, and thus that of a process, is arranged as shown in figure 2.3. But that is
an invention of the operating system. That is the abstraction supplied by the system, implemented using the vir-
tual memory hardware, to make your life easier. This abstraction is caledl memory. A process believes
that it is the only program loaded in memory. You can notice by looking at the addresses shawn Ait pro-
cesses running such program will use the same addresses, which are absolute (virtual) memory addresses. And
more than just one of such processes might run simultaneously in the same computer.

The virtual memory of a process in Plan 9 has several, so calbgpnents This is also an abstraction of the
system and has few to do with the segmentation hardware found at some popular processarsrn segment
is a portion of contiguous memory with some properties. Segments used by a Plan 9 process are:

e Thetext segment It contains instructions that can be executed but not modified. The hardware is used by
the system to enforce these permissions. The memory is initialized by the system with the program text
(code) kept within the binary file for the program.

e Thedata segment It contains the initialized data for the program. Protection is set to allow both read and
write operations on it, but you cannot execute instructions on it. The memory is initialized by the system
using the initialized data kept within the binary file for the program.

e The uninitialized data segment, callesls segmenis almost like the data segment. However, this one is ini-
tialized by zeroing its memory. The name of the segment comes from an arcane instruction used to imple-
ment it on a machine that no longer exists. How much memory is given depends on the size recorded in the
binary file. Moreover, this segment camow, by using a system call that allocates more memory for it.
Function libraries likemalloc cause this segment to grow when they consume all the available memory in
this segment. This is the reason for thap between this segment and the stack segment (shown in figure
2.3), to leave room for the segment to grow.

e Thestack segmenis also used for reading and writing memory. Unlike other segments, this segment seems
to grow automatically when more space is used. It is used to keep the stack for the process.

All this is important to know because it has a significant impact on your programs and processes. Usually, not all
the code is loaded at once from the binary file into the text (memory) segment. Binaries are copied into memory
one virtual memory page at a time as demanded by references to memory addresses. This ieraltet

paging, (or loading on demand). It is important to know this because, if you remove a binary file for a program
that is executing, the corresponding process may get broken if it needs a part of the program that was not yet
loaded into memory. And the same might happen if you overwrite a binary file while a process is using it to
obtain its code!

Because memory igirtual, and is only allocated when first used, any unused part of the BSS segment is
free! It consumes no memory until you touch it. However, if you initialized it with a loop, all the memory will be
allocated. One particular case when this may be useful is when you implement large hash tables that contain few
elements (calledparsd. You might implement them using a huge array, not initialized. Because it is not initial-
ized, no physical memory will be allocated for the array, initially. If the program uses later a portion of the array

-30 -

for the first time, the system will allocate memory and zero it. The array entries would be all nulls. Therefore, in
this example, initializing by hand the array would have a big impact on memory consumption.

2.3. Process birth and death

Programs are natalled, they areexecuted Besides, programs do nggturn, their processes terminate when they
want or when they misbehave. Being this said, we can supply arguments to programs we run, to control what they
do.

When the shell asks the system to execute a program, after it has been loaded into memory, the system pro-
vides a flow of control for it. This means just that processor registers are initialized for the new running program,
including the program counter and stack pointer, along with an initial (almost empty) stack. When we compile a
C program, the loader putsain at the address where the system will start executing the code. Therefore, our C
programs start running abain . The arguments supplied to this program (e.g., in the shell command line) are
copied by the system to the stack for the new program.

The arguments given to threain function of a program are an array of strings (the argument veaigy,)
and the number of strings kept in the array. We can write a program to print its arguments.
@cho.q]

#include <u.h>

#include <libc.h>

void
main(int argc, char* argv[])

{

int i;

for (i=0; i < argc; i++)
print("%d: %s\n ", i, argv[i]);
exits(nil);

}

If we execute it we can see which arguments are given to the program for a particular command line:

. 8c -FVYw echo.c

;. 8/-08.echo echo.8

;. ./8.echo one little program
0: ./8.echo

1: one

2: little

3: program

’

There are several things to note here. First, the first argument supplied to the program is the program name! More
precisely, it is the command name as given to the shell. Second, this time we gave a relative path as a command
name. Remember8.echo , is the file8.echo within the current working directory for our shell. which is a
relative path. And that was the value afgv[0] for our program. Programs know their name by looking at
argv[0] , which is very useful to print diagnostic messages while letting the user know which program was the
one that had a problem.

There is a standard command in Plan 9 that is almost the saghe,. This command prints its arguments
separated by white space and a new line. The new line can be suppressed with thenoption

;. echo hi there
hi there

echo -n hi there
hi there;

Note the shell prompt right after the output of echo. Despite being simple, echo is invaluable to know which argu-
ments a program would get, and to generate text strings by using echo to print them.

-31-

Our program is not a perfect echo. At least, the standahw has the flagn , to ask for a precise echo of
its arguments, without the addition of the final new line. We could add several options to our program.-©ption
may suppress the print of the additional new line, and opfommay print brackets around each argument, to let
us know precisely where does an argument start and where does it end. Without any option, the program might
behave just like the standard tool and print one argument after another. The problem is that the user may call the
program in any of the following ways, among others:

8.echo repeat after me
8.echo -n repeat after me
8.echo -v repeat after me
8.echo -n -v repeat after me
8.echo -nv repeat after me

It is customary that options may be combined in any of the ways shown. Furthermore, the user might want to echo
just-word- , and echo might be confused because it would think-thatd- was a set of options. The standard
procedure is to do it like this.

8.echo -- -word--

The double dash indicates that there are no more options. Isn’t it a burden to progpessndargv to handle
all these combinations? That is why there are a set of macros to help (macros are definitions given to the C pre-
processor, that are replaced with some C code before actually compiling). The following program is an example.

#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])

{

int nflag = 0;
int vflag = 0;
int i;
ARGBEGIN({
case 'V’
vilag = 1;
break;
case’'n’:
nflag = 1;
break;
default:

fprint(2, "usage: %s [-nv] args\n“, argvO0);
exits("usage");
JARGEND;

for (i=0; i < argc; i++)
if (vflag)
print("[%s] ", argv[i]);
else
print("%s ", argv[i]);
if (Inflag)
print("\n“);
exits(nil);

}

The macrosARGBEGINand ARGENDoop through the argument list, removing and processing options. After
ARGENDbothargc andargv reflect the argument liskithoutany option. Between both macros, we must write

the body for aswitch statement (supplied Y RGBEGIN, with acase per option. And the macros take care of

any feasible combination of flags in the arguments. Here are some examples of how can we run our program now.

-32 -

8.aecho repeat after me

repeat after me

. 8.aecho -v repeat after me

[repeat] [after] [me]

;. 8.aecho -vn repeat after me

[repeat] [after] [me] ; we gave a return here.
8.aecho -d repeat after me

usage: 8.aecho [-nv] args

. 8.aecho -- -d repeat after me

-d repeat after me

In all but the last cas@rgc is 3 afterARGENDandargv holds justrepeat , after , andme

Another convenience of using these macros is that they initialize the global vaaighi@ to point to the
originalargv[0] in main, that is, to point to the name of the program. We used this when printing the diagnos-
tic about how the program must be used, which is the custom when any program is called in a erroneously way.

In some cases, an option for a program carries an argument. For example, we might want to allow the user to
specify an alternate pair of characters to use instegdafd] when echoing with thev option. This could be
done by adding an optiord to the program that carries as its argument a string with the characters to use. For
example, like in

8.aecho -v -d"" repeat after me

This can be done by using another macro, cafl&GFE This macro is used within thease for an option, and it
returns a pointer to the option argument (the rest of the argument if there are more characters after the option, or
the following argument otherwise). The resulting program follows.
fbecho.a]
#include <u.h>
#include <libc.h>

void

usage(void)

{
fprint(2, "usage: %s [-nv] [-d delims] args\n", argv0);
exits("usage");

}

void

main(int argc, char* argv[])

{

int nflag = 0;
int vflag = 0;
char* d="["
int i;
ARGBEGIN({
case'v’:
vilag = 1;
break;
case’'n’:
nflag = 1;
break;
case 'd"
d = ARGF();
if (d == nil || strlen(d) < 2)

usage();
break;

-33-

default:
usage();
JARGEND;

for (i=0; i < argc; i++)
if (vflag)
print("%c%s%c ", d[0], argv[i], d[1]);
else
print("%s ", argv[i]);
if (Inflag)
print("\n");
exits(nil);

}

And this is an example of use for our new program.

8.becho -v -d"" repeat after me
llrepeatll llafterll llmell

;. 8.becho -vd " repeat after me note the space before the "
"repeat" "after" "me"
;. 8.becho -v

8.becho -v -d

usage: 8.becho [-nv] [-d delims] args

A missing argument for an option usually means that the program calls a function to terminatesggg.), the
macroEARGHSs usually preferred tdRGFEF We could replace the case for our optigh to be as follows.
case 'd:
delims = EARGF(usage());
if (strlen(delims) < 2)
usage();
break;

And EARGRwould execute the code given as an argument when the argument is not supplied. In our case, we had
to add an extrd# , to check that the argument has at least the two characters we need.

Most of the Plan 9 programs that accept multiple options use these macros to process their argument list in
search for options. This means that the invocation syntax is similar for most programs. As you have seen, you
may combine options in a single argument, use multiple arguments, supply arguments for options immediately
after the option letter, or use another argument, terminate the option list by givingeyument, and so on.

As you have probably noticed after going this far, a process terminates by a ealtso , seeexitq2) for
the whole story. This system call terminates the calling process. The process may leave a single string as its
legacy, reporting what it has to say. Such string reports the pres#tsstatus, that is, what happen to it. If the
string is null, it means by convention that everything went well for the dying process, i.e., it could do its job. Oth-
erwise, the convention is that string should report the problem the process had to complete its job. For example,
[Sic.C

#include <u.h>

#include <libc.h>

void

main(int, char*[])

{

exits("sic!");

}

would reportsic! to the system wheaxits terminates the process. Here is a run that shows that by echoing
$status we can learn how it went to this depressive program.

-34 -

. 8.sic
. echo $status
8.sic 2046: sic!

’

Commands exit with an appropriate status depending on what happen to themlsThepprts success as its sta-

tus when it could list the files given as arguments, and it reports failure otherwise. In the samenwayports
success when it could remove the file(s) indicated, and failure otherwise. And the same applies for other com-
mands.

We lied before when we said that a program starts runnimgaan , it does not. It starts running at a func-
tion that callsmain and then (whemnain returns), this function callexits to terminate the execution. That is
the reason why a process ceases existing when the main function of the program returns. The process makes a sys
tem call to terminate itself. There is no magic here, and a process may not cease existing merely because a func-
tion returns. A flow of control does not vanish, the processor always keeps on executing instructions. However,
because processes are an invention of the operating system, we can use a system call that kills the calling process.
The system deallocates its resources and the process is history. A process is a data type after all.

In few words, if your program does not cakits , the function that callsnain will do so whenmain
returns. But you better caéixits in your program. Otherwise, you cannot be sure about what value is being
used as your exit status.

2.4. System call errors

In this chapter and the following ones we are going to make a lot of system calls from programs written in C. In
many cases, there will be no problem and a system call we make will be performed. But in other cases we will
make a mistake and a system call will not be able to do its work. For example, this will happen if we try to change
our current working directory and supply a path that does not exist.

Almost any function that we call (and system calls are functions) may have problems to complete its job. In
Plan 9, when a system call encounters an error or is not able to do its work, the function returns a value that alerts
us of the error condition. Depending on the function, the return value indicating the error may be one or another.
In general, absurd return values are used to report errors.

For example, we will see how the system agen returns a positive small integer. However, upon failure,
it returns -1. This is the convention for most system calls returning integer values. System calls that return strings
will return a null string when they fail, and so on. The manual pages report what a system call does when it fails.

You mustalways check for error conditions. If you do not check that a system call could do its work, you
do not know if it worked. Be warned, not checking for errors is like driving blind, and it will surely put you into a
debugging Inferno (limbo didn’t seem bad enough). An excellent book, that anyone programming should read,
which teaches practical issues regarding how to program is [2].

Besides reporting the error with an absurd return value from the system call, Plan 9 keeps a string describing
the error. Thiserror string is invaluable information for fixing the problem. You really want to print it out to let
the user know what happen.

There are several ways of doing so. The more convenient one is using the féfmian print . This
instructsprint to ask Plan 9 for the error string and print it along with other output. This program is an exam-
ple.

-35-

BIT.C
#include <u.h>
#include <libc.h>

void
main(int , char* [])
{
if (chdir("magic") < 0)}{
sysfatal("chdir failed: %r\n");

}
/* ... do other things ... */

exits(nil);

}

Let's run it now

, 8err
chdir failed: ‘'magic’ file does not exist

The program tried to usehdir to change its current working directory teagic . Because it did not exist, the
system call failed and returned . A good program would always check for this condition, and then report the
error to the user. Note the use%f in print and compare to the output produced by the program.

If the program cannot proceed because of the failure, it is sensible to terminate the execution indicating that
the program failed. This is so common that there is a function that both prints a message and exits. It is called
sysfatal , and is used like follows.

if (chdir("magic") < 0)
sysfatal("chdir failed: %r");

In a few cases you will need to obtain the error string for a system call that failed. For example, to modify it and
print a customary diagnostic message. The systenreaiitr reads the error string. It stores the string at the
buffer you supply. Here is an example

char error[128];
rerrstr(error, sizeof error);

After the call,error contains the error string.

A function implemented to be placed in a library also needs to report errors. If you write such function, you
must think how to do that. One way is to use the same mechanism used by Plan 9. This is good because it allows
any programmer using your library to do exactly the same to deal with errors, no matter if the error is being
reported by your library function or by Plan 9.

The system callverrstr writes a new value for the error string. It is used lijgnt . Using it, we can
implement a function thgtops an element from a stack and reports errors nicely:

int
pop(Stack * s)
if (isempty(s))}{
werrstr("pop on an empty stack");
return -1,
... do the pop otherwise ...
}

Now, we could write code like the following,

-36 -

if (pop(s) < OX
print("pop failed: %r\n");

}

and, upon an error ipop this would print something like:

pop failed: pop on an empty stack

2.5. Environment

Another way to supplyargument5to a process is to definenvironment variables Each process is supplied

with a set ofnamervaluestrings, that are known as environment variables. They are used to customize the behav-
ior of certain programs, when it is more convenient to define an environment variable than to give a command
line argument every time we run a program. Usually, all processes running in the same window share the environ-
ment variables.

For example, the variableome has the path for your home directory as its value. The comnedndses
this variable to know where your home is. Otherwise, how could it know what to do when given no arguments?
Both names and values of environment variables are strings. Remember this.

We can define environment variables in a shell command line by using an equal sign. Later, we can use the
shell to refer to the value of any environment variable. After reading each command line, the shell replaces each
word starting with a dollar sign with the value of the environment variable whose name follows the dollar. For
example, the first command in the following session defines the varitble

; dir=/a/very/long/path

;. cd $dir

; pwd

lalveryllong/path

’

The second command line usgdir , and therefore, the shell replaced the sti§aiy with the string that is the

value of thedir environment variablga/very/long/path . Note thatcd knows nothing abousdir . We
can see this usingcho , because we know it prints the arguments received verbatim.

. echo $dir

[alvery/long/path

3

The next two commands do the same. However, one receives one argument and the other does not. The output of
pwd would be the same after any of them.

. cd $home
. cd

In some cases it is convenient to define an environment variable just for a command. This can be done by defin-
ing it in the same command line, before the command, like in the following example:

; temp=/tmp/foobar echo $temp
/tmp/foobar
echo $temp

’

At this point, we can understand whbdtatus means. It is the value of the environment variastigus This
variable is updated by the shell once it finds out how it went to the last command it executed. This is done before
prompting for the next command. As you know, the value of this variable would be the string giggitsioy the
process running the command.

-37-

Another interesting variable igath . This variable is a list of paths where the shell should look for exe-
cutable files to run the user commands. When you type a command name that does not sfarbwith the
shell looks for an executable file relative to each one of the directories listdath , in the same order. If a
binary file is found, that is the one executed to run the command. This is the valuepEttheariable in a typical
Plan 9 shell:

; echo $path
. Ibin

’

It contains the working directory, aridin , in that order. If you typés , the shell tries with/ls , and if there
is no such file, it tries withbin/ls . If you typeip/ping , the shell tries with/ip/ping , and then with
/bin/ip/ping . Simple, isn'tit?

Two other useful environment variables arger , which contains the user name, asgsname , which
contains the machine name. You may define as many as you want. But be careful. Environment variables are usu-
ally forgotten while debugging a problem. If some program input value should be a command line argument, use a
command line argument. If somehow you need an environment variable to avoid passing an argument all the
times a program is called, perhaps the command arguments should be changed. Sensible default values for pro-
gram arguments can avoid the burden of having to supply always the same arguments. Command line arguments
make the program invocation explicit, more clear at first sight, and therefore, simpler to grasp and debug. On the
other hand, environment variables are used by programs without the user noticing.

Because of the syntax in the shell for environment variables, we may have a problem if we want¢thaun
or any other program, supplying arguments containing either the dollar sign, or the equal sign. Both characters we
know are special. This can be done by asking the shell not to do anything with a string we type, and to take it lit-
erally. Just type the string into single quotes and the shell will not change anything between them:

. echo $user
nemo

echo ‘$user’ is $user
$user is nemo

3

Note also that the shell behaves always the same way regarding command line text. For example, the first word
(which is the command name) is not special, and we can do this

;. cmd=pwd
. $cmd
/usr/nemo

and use variables wherever we want in command lines. Also, quoting works always the same way. Let’s try with
theechoprogram we implemented before:

8.echo 'this is’ weird
0: echo
1: thisis
2: weird

’

As you may seeargv[1l] contains the stringhis is , including the white space. The shell did not split the
string into two different arguments for the command. Because you quoted it! Even the new line can be quoted.

echo 'how many
lines’
how many
lines

The prompt changed because the shell had to read more input, to complete the quoted string. That is its way of tel-
ling us. Quoting also removes the special meaning of other characters, like the backslash:

- 38 -

echo |
" waiting for the continuation of the line
; ...until we press return
echo prints the empty line
; echo’l

\

To obtain the value for a environment variable, from a C program, we can uggetbev system call. And of
course, the program must check out for errors. Egetenv can fail. Perhaps the variable was not defined. In
this casegetenv returns a null string.

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

char* home;

home = getenv("home");
if (home == nil)
sysfatal("we are homeless");
print(*home is %s\n", home);
exits(nil);

}
Running it yields

. 8.env
home is /usr/nemo

A related call isputenv , which accepts a name and a value, and sets the corresponding environment variable
accordingly. Both the name and value are strings.

2.6. Process names and states

The name of a process is not the name of the program it runs. That is convenient to know, nevertheless. Each pro-
cess is given a unique number by the system when it is created. That number is caflesttes id or thepid.
The pid identifies, and therefore names, a process.

The pid of a process is a positive number, and the system tries hard not to reuse them. This number can be
used to name a process when asking the system to do things to it. Needless to say tlaaéigsalso an inven-
tion of the operating system. The shell environment variglile contains the pid for the shell. Note that its value
is a string, not an integer. Useful for creating temporary files that we want to be unique for a given shell.

To know the pid of the process that is executing our program, we cagelgil

mid.c
#include <u.h>
#include <libc.h>

void
main(int, char*[])

{
int pid;

pid = getpid();
print("my pid is %d\n", pid);
exits(nil);

-39 -

Executing this program several times may look like this

;. 8.pid

my pid is 345

;. 8.pid

my pid is 372
The first process was the one with pid 345, but we may say as well that the first process was the 345, for short.
The second process started was the 372. Each time we run the program we would get a different one.

The commangs (process status) lists the processes in the system. The second field of each line (there is
one per process) is the process id. This is an example

; Ps

nemo 280 0:00 0:00 1313 1148K Pread rio
nemo 281 0:02 0:07 1313 1148K Pread rio
nemo 303 0:00 0:00 1313 1148K Await rio
nemo 305 0:00 0:00 1313 248K Await rc

nemo 306 0:00 0:00 1313 1148K Await rio

... more output omitted ...

The last field is the name of the program being run by the process. The third field going right to left is the size of
the (virtual) memory being used by the process. You may now know how much memory a program consumes
when loaded.

The second field on the right is interesting. You see namesHilead andAwait . Those names reflect
the process state The process state indicates what the process is doing. For example, the first processes 280 and
281, runningio , are reading something, and everyone else in the listing above is awaiting for something to hap-
pen. To understand this, it is important to get an idea of how the operating system implements processes.

There is only one processor, but there are multiple processes that seem to run simultaneously. That is the
process abstraction. Multiple programs that execute independently of each other. None of them transfer control to
others. However, the processor implements only a single flow of control.

What happens is that when one process enters the kernel because of a system call, or an interrupt, the system
may store the process state (its registers maostly) and then jump to the previously saved state for another process.
Doing this quickly, with the amazingly fast processors we have today, makes it appear that all processes can run at
the same time. Each process is given a small amount of processor time, and later, the system decides to jump to
another one. This amount of processor time is callegiantum, and can be 100ms, which is a very long time
regarding the number of machine instructions that you can execute in that time.

A transfer of control from one process to another, by saving the state for the old process and reloading the
state for the new one, is calleccantext switch, because the state for a process (its registers, stack, etc.) is called
its context But note that it is the kernel the one that transfers control. You do not injudgs’ to other pro-
cesses in your programs!

The part of the kernel deciding which process runs each time is callesttHesluler, because it schedules
processes for execution. And the decisions made by the scheduler to multiplex the processor among processes are
collectively known ascheduling In Plan 9 and most other systems, the scheduler is able to move a process out
of the processor even if it does not call the operating system (and gives it a chance to move the process out). Inter-
rupts are used to do this. Such type of scheduling is caltedmptive scheduling

With a single processor, just one process mayumming at a time, and many others may tsady to run.
These are two process states, see figure 2.4. The running process becomes ready when the system terminates it
time in the processor. Then, the system picks up a ready process to become the next running one. States are just
constants defined by the system to cope with the process abstraction.

Many times, a process would be reading from a terminal, or from a network connection, or any other device.
When this happens, the process has to wait for input to come. The process could wait by using a loop, but that
would be a waste of the processor. The idea is that when one process starts waiting for input (or output) to happen,
the system can switch to another process and let it run. Input/output devices are so slow compared with the pro-
cessor that the machine can execute a lot of code for other processes while one is waiting. The time the processor
needs to execute some instructions, compared to the time needed by 1/0O devices to perform their job, is like the

- 40 -

time you need to move around in your house and the time you need to go to the moon.

This idea is central to the concept wiultiprogramming , which is the name given to the technique that
allows multiple programs to be loaded at the same time on a computer.

Broken Death

Birth Blocked

Figure 2.4: Process states and transitions between them.

To let one process wait out of the processor, without considering it as a candidate to be put into the running
state, the process is flaggedladscked. This is yet another process state. All the processes listed above where
blocked. For examplRread andAwait mean that the process is blocked (i.e., the former shows that the pro-
cess is blocked waiting for a read to complete). When the event a blocked process is waiting for happens, the pro-
cess state is changed to ready. Sometime in the future it will be selected for execution in the processor.

In Plan 9, the state shown for blocked processes reflects the reason that caused the process to block. That is
why ps shows many different states. They are a help to let us know what is happening to our processes.

There is one last stateroken, which is entered when the process does something illegal (i.e., it suffers an
error). For example, dividing by zero or dereferencing a null pointer causes a hardware exception (an error).
Exceptions are dealt with by the hardware like interrupts are, and the system is of course the handler for these
exceptions. Upon this kind of error, the process enters the broken state. A broken process will never run. But it
will be kept hanging around for debugging until it dies upon user request (or because there are too many broken
processes).

2.7. Debugging

When we make a mistake, and a running program enters the broken state, it is useful to see what happen. There
are several ways of finding out what happen. To see them, let’s write a program that crashes. This program says
hello to the name given as an argument, but it does not check that the argument was given, nor does it use the
appropriate format string faarint
hi.c

#include <u.h>

#include <libc.h>

void

main(int, char*argvl])

{
/* Wrong! */
print("hi *);
print(argv[1]);
exits(nil);

}

When we compile this program and execute it, this happens:
8.hi
8.hi 788: suicide: sys: trap: fault read addr=0x0 pc=0x000016ff

The last line is a message printed by the shell. It was waitin@for to terminate its execution. When it termi-
nated, the shell saw that something bad happen to the program and printed the diagnostic so we could know. If we

-41 -

print the value of thestatus variable, we see this

; echo $status
8.hi 788: sys: trap: fault read addr=0x0 pc=0x000016ff

Therefore, théegacy or exit status, 08.hi is the string printed by the shell. This status does not proceed from a
call to exits in 8.hi , we know that. What happen is that we tried to read the memory address 0x0. That
address is not within any valid memory segment for the process, and reading it leads to an error (or exception, or
fault). That is why the status string contaifaalt read addr=0x0 . The status string starts with the pro-

gram name and the process pid, so we could know which process had a problem. There is more information, the
program counter when the process tried to read 0x0, was 0x000016ff. We do some post-mortem analysis now.

The programsrc knows how to obtain the source file name and line number that corresponds to that pro-
gram counter.

;. Src -n -s 0x000016ff 8.hi
[sysl/src/libc/fmt/dofmt.c:37

We gave the name of the binary file as an argument. The optionauses the source file name and line to be
printed. Otherwisarc would ask your editor to display that file and line. Optiegn permits you to give a mem-

ory address or a symbol name to locate its source. By the way, this program is an endless source of wisdom. If
you want to know how to implement, sagat , you can rursrc /bin/cat

Because of the source file name printed, we know that the problem seems to be within the C library, in
dofmt.c . What is more likely? Is there a bug in the C library or did we make a mistake when calling one of its
functions? The mystery can be solved by looking at the stack of the broken process. We can read the process stack
because the process is still there, in the broken state:

» ps
...many other processes...

nemo 788 0:00 0:00 24K Broken 8.hi

3

To print the stack, we call the debuggacid :

; acid 788
/proc/788/text:386 plan 9 executable

[sysllib/acid/port
/sysllib/acid/386
acid:

This debugger is indeed a powerful tool, described in [8], we will use just a couple of its functions. After obtain-
ing the prompt fromacid , we ask for a stack dump using tetk command:

acid: stk()

dofmt(fmt=0x0,f=0xdfffef08)+0x138 /sys/src/libc/fmt/dofmt.c:37
viprint(fd=0x1,args=0xdfffef60,fmt=0x0)+0x59 /sys/src/libc/fmt/vfprint.c:30
print(fmt=0x0)+0x24 /sys/src/libc/fmt/print.c:13
main(argv=0xdfffefb4)+0x12 /usr/nemo/9intro/hi.c:8

_main+0x31 /sys/src/libc/386/main9.s:16

acid:

The functionstk() dumps the stack. The program crashed while executing the fundiiémt , at file
dofmt.c . This function was called byfprint , which was called byprint , which was called bynain . As
you can see, the paramefent of print is zero! That should never happen, becapget expects its first
parameter to be a valid, non-null, string. That was the bug.

We can gather much more information about this program. For example, to obtain the values of the local
variables in all functions found in the stack

=42 -

acid: Istk()
dofmt(fmt=0x0,f=0xdfffef08)+0x138 /sys/src/libc/fmt/dofmt.c:37
nfmt=0x0
rt=0x0
rs=0x0
r=0x0
rune=0x15320000
t=0xdfffee08
s=0xdfffef08
n=0x0
viprint(fd=0x1,args=0xdfffef60,fmt=0x0)+0x59 /sys/src/libc/fmt/vfprint.c:30
f=0x0
buf=0x0
n=0x0

print(fmt=0x0)+0x24 /sys/src/libc/fmt/print.c:13
args=0xdfffef60

main(argv=0xdfffefb4)+0x12 /usr/nemo/9intro/hi.c:8

_main+0x31 /sys/src/libc/386/main9.s:16

When your program gets broken, usilstk() in acid is invaluable. Usually, that is all you need to fix your
bug. You have all the information about what happen froain down to the point where it crashed, and you just
have to think a little bit why that could happen. If your program was checking out for errors, things can be even
more easy, because in many case the error diagnostic printed by the program may suffice to fix up the problem.

One final note. Can you see hawain is not the main function in your program? It seems thaiain in
the C library called what we thought was thmain function.

The last note about debugging is not about what to do after a program crashes, but about wiesftoedo
There is a library function callegbort . This is its code

void

abort(void)

while(*(int*)0)

}

This function dereferences a nil pointer! You know what would happen to the miserable program aladimg.

It gets broken. While you program, it is very sensible to prepare for things that in theory would not happen. In
practice they will happen. One tool for doing thisabort . You can include code that checks for things that
should never happen. Those things that you know in advance that would be very hard to debug. If your code
detects that such things happen, it may edlbrt . The process will enter the broken state for you to debug it
before things get worse.

2.8. Everything is a file!

We have seen two abstractions that are part of the baggage that comes with processes in Plan 9: Processes
themselves and environment variables. The way to use these abstractions is to perform system calls that operate
on them.

That is nice. But Plan 9 was built considering that it is natural to have the machine connected to the net-
work. We saw how your files are not kept at your terminal, but at a remote machine. The designers of the system
noticed that files (another abstraction!) were simple to use. They also noticed that it was well known how to engi-
neer the system to permit one machine use files that were kept at another.

Here comes the idea! For most abstractions provided by Plan 9, to let you use your hardiikre, a
interface is provided. This means that the system lies to you, and makes you believe that many things, that of
course are not, are files. The point is that tlagypearto be files, so that you can use them as if that was really the
case.

-43-

The motivation for doing things this way is that you get simple interfaces to write programs and use the sys-
tem, and that you can use also these files from remote machines. You can debug programs running at a different
machine, you can use (almost) anything from any other computer running Plan 9. All you have to do is to apply
the same tools that you are using to use your real files at your terminal, while keeping them at a remote machine
(the file server).

Consider the time. Each Plan 9 machine has an idea of what is the time. Internally, it keeps a counter to
notice the time passing by and relies on a hardware clock. However, for a Plan 9 user, the time seems to be a file:

cat /dev/time
1152301434 1152301434554319872

Reading/dev/time vyields a string that contains the time, measured in various forms: Seconds since the epoch
(since a particular agreed-upon point in time in the past), nanoseconds since the epoch, and clock ticks since the
epoch.

Is /devitime a real file? Does it exist in your disk with rest of the files? Of course not! How can you
keep in a disk a file that contains tlearrenttime? Do you expect a file to change by some black magic so that
each different nanosecond it contains the precise value that matches the current time? What happens is that when
you read the file the system notices you are readlileg/time , and it knows what to do. To give you the string
representing the current system time.

If this seems confusing, think that files are an abstraction. The system can decide what reading a file means,
and what writing a file means. For real files sitting on a disk, the meaning is to read and write data from and to the
disk storage. However, foidev/time , reading means obtaining the string that represents the system time.
Other operating systems providdime system call that returns the time. Plan 9 provides a (fake!) file. The C
functiontime , described irtime(2), reads this file and returns the integer value that was read.

Consider now processes. How dgesknow which processes are in the system? Simple. In Plan 9, the
/proc directory does not exist on disk either. It is a virtual (read: fake) directory that represents the processes
running in the system. Listing the directory yields one file per process:

;. lc /proc
1 1320 2 246 268 30 32 348
10 135 20 247 269 300 320 367

But these files are not real files on a disk. They areittterfacefor handling running processes in Plan 9. Each
of the files listed above is a directory, and its name is the process pid. For example, to go to the directory repre-
senting the shell we are using we can do this:

; echo $pid

938

;. cd /proc/938

;e

args fd kregs note notepg proc regs status wait
ctl fpregs mem noteid ns profile segment text

These files provide the interface for the process with pid 938, which was the shell used. Many of these (fake, vir-
tual) files are provided to permit debuggers to operate on the process, and to permit prograsgiteer infor-

mation about the process. For example, look again at the first lines printadidy when we broke a process in

the last section:

; acid 788
/proc/788/text:386 plan 9 executable

Acid is reading/proc/788/text , Which appears to bea file containing the binary for the program. The
debugger also usefproc/788/regs , to read the values for the processor registers in the process, and
/proc/788/mem , to read the stack when we asked for a stack dump.

Besides files intended for debuggers, other files are for you to use (as long as you remember that they are
not files, but part of the interface for a process). We are now in position of killing a process. If we write the string
kill into the file namedttl , we Kill the process. For example, this command writes the skilhg into the

- 44 -

ctl file of the shell where you execute it. The result is that you are killing the shell you are using. You are not
writing the stringkill on a disk file. Nobody would record what you wrote to that file. The more probable
result of writing this is that the window where the shell was running will vanish (because no other processes are
using it).
echo kill >/proc/$pid/ct!
... where is my window? ...

We saw the memory layout for a process. It had several segments to keep the process memory. One of the (vir-
tual) files that is part of the process interface can be used to see which segments a process is using, and where do
they start and terminate:

; cat /proc/$pid/segment

Stack defff000 dffff000 1

Text R 00001000 00016000 4
Data 00016000 00019000 1
Bss 00019000 0003000 1

The stack starts at 0xdefff000, which is a big number. It goes up to Oxdffff000. The process is not probably using
all of this stack space. You can see how the stack segmenndbgsow. The physical memory actually used for

the process stack will be provided by the operating system on demand, as it is referenced. Having virtual memory,
there is no need for growing segments. The text segment is read-only (it Rgsrewted). And four processes are

using it! There must be four shells running at my system, all of them executing codédine

Note how the first few addresses, from 0 to 0xOfff, are not valid. You cannot use the first 4K of your (vir-
tual) address space. That is how the system catches null pointer dereferences.

We have seen most of the file interface provided for processes in Plan 9. Environment variables are not dif-
ferent. The interface for using environment variables in Plan 9 is a file interface. To know which environment
variables we have, we can list a (virtual) directory that is invented by Plan 9 to represent the interface for our envi-
ronment variables. This directoryfenv .

. Ic/env

* cpu init planb syshame
0 cputype location plumbsrv tabstop
MKFILE disk menuitem prompt terminal
afont ether0 monitor rcname timezone
apid facedom mouseport role user
auth ‘fn#tsigexit’ nobootprompt rootdir ~ vgasize
bootdisk font objtype sdCOpart wctl
bootfile fs part sdClpart wsys
cflag home partition service
cfs i path status

cmd ifs pid sysaddr

Each one of these (fake!) files represents an environment variable. For you and your programs, these files are as
real as those stored in a disk. Because you can list them, read them, and write them. However, do not search for
them on a disk. They are not there.

You can see a file namexysname , another namedser , and yet another namgzhth . This means that
your shell has the environment variablssnamguser, andpath Let's double check:

. echo $user
nemo

. cat/env/user
nemo;

Thefile /fenv/user appears to contain the strimgemo, (with no new line at the end). That is precisely the
value printed byechq which is the value of theserenvironment variable. The implementationgsteny which

we used before to return the value of an environment variable, reads the corresponding file, and returns a C string
for the value read.

- 45 -

This simple idea, representing almost everything as a file, is very powerful. It will take some ingenuity on
your part to fully exploit it. For example, the filelev/text represents the text shown in the window (when
used within that window). To make a copy of your shell session, you already know what to do:

cp /dev/text $home/saved

The same can be done for the image shown in the display for your window, which is also represented as a file,
/deviwindow . This is what we did to capture screen images for this book. The same thing works for any pro-
gram, not just focp, for examplelp prints a file, and this command makes a hardcopy of the whole screen.

. lp /dev/screen

Problems

1 Why was not zero the first address used by the memory image of pragodal ?

2 Write a program that defines environment variables for arguments. For example, after calling the program
with options

;oargs-ab-dxyz

the following must happen:

; echo $opta
yes

echo $optb
yes
; echo $optc
yes
;. echo $args
Xyz

3 What would print/bin/ls /blahblah (given that/blahblah ~ does not exits). Woulds /blah-
blah print the same? Why?

4 What happens when we execute
; cd

after executing this program. Why?

#include <u.h>
#include <libc.h>
void

main(int, char*[])

putenv("home", "/tmp");

exits(nil);
}
5 What would do these commands? Why?
;ocd/
;ocd..
;o pwd

6 After readingdatg1), change the environment varialtimezone to display the current time in New Jer-
sey (East coast of US).

7 How can we know the arguments given to a process that has been already started?

Give another answer for the previous problem.

9 What could we do if we want to debug a broken process tomorrow, and want to power off the machine now?
10 What would happen if you use the debuggmid , to inspect8.out after executing the next command

0o

line? Why?
strip 8.out

- 46 -

3 — Files

3.1. Input/Output

It is important to know how to use files. In Plan 9, this is even more important. The abstractions provided by Plan
9 can be used through a file interface. If you know how to use the file interface, you also know how to use the
interface for most of the abstractions that Plan 9 provides.

You already know a lot about files. In the past, we have been ywing to write messages. And, before
this course, you used the library of your programming language to open, read, write, and close files. We are going
to learn now how to do the same, but using the interface provided by the operating system. This is what your pro-
gramming language library uses to do its job regarding input/output.

Considerprint , it is a convenience routine to print formatted messages. It writes to a file, by calling
write . Look at this program:

write.cj
#include <u.h>

#include <libc.h>

void
main(int , char* [])

{

char msg[] = "hello\n";
int l;

| = strlen(msg);
write(1, msg, I);
exits(nil);

}

This is what it does. It does the same theht would do given the same string.

. 8.write
hello

The functionwrite writes bytes into a file. Isn’t it a surprise? To find out the declaration for this function, we
can usesig .
;. SIg write
long write(int fd, void *buf, long nbytes)

The bytes written to the file come frotouf , which wasmsg in our example program. The number of bytes to
write is specified by the third parametaytes , which was the length of the string msg. And the file were
to write was specified by the first parameter, which was jusir us.

Files have names, as we learned. We can use a full path, absolute or relative, to name a file. Files being used
by a particular process haveames as well. The names are calléite descriptors and are small integers. You
know from your programming courses that to read/write a file you must open it. Once open, you may read and
write it until the file is closed. To identify an open file you use a small integer, its file descriptor. This integer is
used by the operating system as an index in a table of open files for your process, to know which file to use for
reading or writing. See figure 3.1.

All processes have three files open right from the start, by convention, even if they do not open a single file.
These open files have the file descriptors 0, 1, and 2. As you could see, file descriptor 1 is used for data output
and is callecstandard output, File descriptor O is used for data input and is calehdard input, File descrip-
tor 2 is used for diagnostic (messages) output and is calewlard error.

1 Remember that this program looks at the source of the manual pages, in section 2, to find a function with the given name in any SYNOPSIS
of any manual page. Very convenient to get a quick reminder of which arguments receives a system function, and what does it return.

- 48 -

Standard
File descripto input
table
0
1 Standard
output
2
3
n Standard
error

Figure 3.1: File descriptors point to files used for standard input, standard output, and standard error.
To read an open file, you may catad . Here is the function declaration:

sig read
long read(int fd, void *buf, long nbytes)

It reads bytes from file descriptdd a maximum ofnbytes bytes and places the bytes read at the address
pointed to bybuf . The number of bytes read is the value returned. Read does not guarantee that we would get as
many bytes as we want, it reads what it can and lets us know. This program reads some bytes from standard input
and later writes them to standard output.
read.c

#include <u.h>

#include <libc.h>

void

main(int , char* [])

{
char buffer[1024];
int nr;

nr = read(0, buffer, sizeof buffer);
write(1, buffer, nr);
exits(nil);

}

And here is how it works:

; 8.read
from stdin, to stdout! If you type this
from stdin, to stdout! the program writes this

When you run the program it calfead , which awaits until there is something to read. When you type a line and
press return, the window gives the characters you typed to the program. They are sterad gt buffer |, and

the number of bytes that it could read is returned and stored atlLater, the program usesgrite to write so
many bytes into standard output, echoing what we wrote.

Many of the Plan 9 programs that accept file names as arguments work with their standard input when given
no arguments. Try runnincat .

; cat
...it waits until you type something

It reads what you type and writes a copy to its standard output

- 49 -

. cat

from stdin, to stdout! If you type this
from stdin, to stdout! cat writes this
and again

and again

control-d

until reaching the end of the file. The end of file for a keyboard? There is no such thing, but you can pretend there
is. When you type &ontrol-d by pressing the&l key while holding dowrnControl, the program reading from the
terminal gets an end of file.

Which file is standard input? And output? Most of the times, standard input, standard output, and standard
error go to/dev/cons . This file represents theonsolefor your program. Like many other files in Plan 9, this
is not a real (disk) file. It is the interface to use the device that is known as the console, which corresponds to
your terminal. When you read this file, you obtain the text you type in the keyboard. When you write this file, the
text is printed in the screen.

When used within the window systerfdev/cons corresponds to a fake console invented just for your
window. The window system takes the real console for itself, and provides each window with a virtual console,
that can be accessed via the fillev/cons within each window. We can rewrite the previous program, but
opening this file ourselves.
read.c

#include <u.h>

#include <libc.h>

void

main(int , char* [])

{
char buffer[1024];

int fd, nr;

fd = open(“/dev/cons", ORDWR);
nr = read(fd, buffer, sizeof buffer);
write(fd, buffer, nr);

close(fd);

exits(nil);

}

This program behaves exactly like the previous one. You are invited to try. To open a file, you mugiesall
specifying the file name (or its path) and what do you want to do with the open file. The integer c@DRRR2WR
means to open the file for both reading and writing. This function returns a new file descriptor to let you call
read orwrite forthe newly open file. The descriptor is a small integer that we stordfdnfdo use it later with

read andwrite . Figure 3.2 shows the file descriptors for the process running this program after the call to
open. It assumes that the file descriptor for the new open file was 3.

When the file is no longer useful for the program, it can be closed. This is achieved by cdtsg |,
which releases the file descriptor. In our program, we could have fsxicons several times, one for read-
ing and one for writing

infd = open("/dev/cons", OREAD);
outfd = open("/dev/cons", OWRITE);

using the integer constanBREADand OWRITE that specify that the file is to be open only for reading or writ-
ing. But it seemed better to open the file just once.

The file interface provided for each process in Plan 9 has a file that provides the list of open file descriptors
for the process. For example, to know which file descriptors are open in the shell we are using we can do this.

File descripto
table

- 50 -

0

1
2
3

V

\ /dev/cons

Figure 3.2: File descriptors for the program after openifagv/cons

; cat /proc/$pid/fd
/usr/nemo
Or M 94 (0000000000000001 000) 8192 18 /dev/cons
1w M 94 (0000000000000001 000) 8192 2 /devi/cons
2w M 94 (0000000000000001 000) 8192 2 /dev/cons
3r c 0 (0000000000000002 0 00) 0 0 /dev/cons
4w cC 0 (0000000000000002 0 00) 0 0 /dev/cons
5w c 0 (0000000000000002 0 00) 0 0 /devi/cons
6rw| 0 (0000000000000241 0 00) 65536 38 #|/data
7w | 0 (0000000000000242 0 00) 65536 81320369 #|/datal
8rw | 0 (0000000000000281 0 00) 65536 0 #|/data
9rw | 0 (0000000000000282 0 00) 65536 0 #|/datal
10r M 10 (00003b49000035b0 13745 00) 8168 512 /rc/lib/rcmain
11r M 94 (0000000000000001 000) 8192 18 /dev/cons

The first line reports the current working directory for the process. Each other line reports a file descriptor open
by the process. Its number is listed on the left. As you could see, our shell has descriptors 0, 1, and 2 open

(among others). All these descriptors refer to the filev/cons

, whose name is listed on the right for each

descriptor. Another interesting information is that the descriptor 0 is open just for re@IRIEAD, because there
is anr listed right after the descriptor number. And as you can see, both standard output and error are open just

for writing (OWRITE, because there iswa printed after the descriptor number. Thpeoc/$pid/fd

file is a

useful information to track bugs related to file descriptor problems. Which descriptors has the typical process

open? If you are skeptic, this program might help.

#include <u.h>

#include <libc.h>

void

main(int, char*[])

{
print("process pid is %d. have fun.\n", getpid());
sleep(3600*1000); // one hour to play
exits(nil);

}

It prints its PID, and hangs around for one hour. After running this program

-51 -

8.sleep
process pid is 1413. have fun.
...and it hangs around for one hour.

we can use another window to inspect the file descriptors for the process.

; cat/proc/1413/fd

/usr/nemo/9intro
or M 94 (0000000000000001 0 00) 8192 87 /dev/cons
iw M 94 (0000000000000001 0 00) 8192 936 /dev/cons
2w M 94 (0000000000000001 0 00) 8192 936 /dev/cons
3r c 0 (0000000000000002 0 00) 0 0 /dev/cons
4w ¢ 0 (0000000000000002 0 00) 0 0 /dev/cons
5w c 0 (0000000000000002 0 00) 0 0 /dev/cons
6 rw | 0 (0000000000000241 0 00) 65536 38 #|/data
7rw | 0 (0000000000000242 0 00) 65536 85044698 #|/datal
8rw| 0 (0000000000000281 0 00) 65536 0 #|/data
9rw | 0 (0000000000000282 0 00) 65536 0 #|/datal

Your process has descriptors 0, 1, and 2 open, as they should be. However, it seems that there are many other one:
open as well. That is why you cannot assume that the first file you open in your program is going to obtain the file
descriptor number 3. It might already be open. You better be aware.

There is one legitimate question still pending. After we open a file, how ket know from where in the
file it should read? The function knows how many bytes we would like to read at most. But its parameters tell
nothing about theffsetin the file where to start reading. And the same question appliesite as well.

The answer comes frompen, Each time you open a file, the system keeps track fieaoffset for that
open file, to know the offset in the file where to start working at the meatl or write . Initially, this file off-
set is zero. When you write, the offset is advanced the number of bytes you write. When you read, the offset is
also advanced the number of bytes you read. Therefore, a series of writes would storselyiestially one
write at a time, each one right after the previous one. And the same happens while reading.

The offset for a file descriptor can be changed usingstiek system call. Its second parameter can be 0, 1,
or 2 to let you change the offset to an absolute position, to a relative one counting from the old value, and to a rel-
ative one counting from the size of the file. For example, this sets the offtet in be 10:

seek(fd, 10, 0);

This advances the offset 5 bytes ahead:
seek(fd, 5, 1);

And this moves the offset to the end of the file:
seek(fd, 0, 2);

We did not use the return value frogeek , but it is useful to know that it returns the new offset for the file
descriptor.

3.2. Write games

This program is a variant of the first one in this chapter, but writes the salutation to a regular file, and not to the
console

-52 -

ffhello.c
#include <u.h>
#include <libc.h>

void

main(int , char* [])

{
char msg[] = "hello\n";
int fd;

fd = open(“afile", OWRITE);
write(fd, msg, strlen(msg));
close(fd);
exits(nil);

}

We can create a file to play with by copyilgOTICE to afile , and then run this program to see what happens.
. ¢cp /NOTICE afile
;. 8.fhello

This is what was atNOTICE::

; cat/NOTICE
Copyright © 2002 Lucent Technologies Inc.
All Rights Reserved

and this is what is irafile

; cat afile

hello

ght © 2002 Lucent Technologies Inc.
All Rights Reserved

At first sight, it seems that something weird happen. The file has one extra line. However, part of the original text
has been lost. These two things seem contradictory but they are not.Xdsimgy reveal what happen:

. xd -c afile

0000000 h e I | o\n g h t c2 a9 2 0 0
0000010 2 L uc e n t T e ¢ h n o |
0000020 o g i e s I n ¢ .\n A | | R
0000030 i g h t s R e s e r v e d\n
000003f

;. xd-c/NOTICE

0000000 C o py r i g ht c2 a9 2 0 0
0000010 2 L uc e n t T e ¢ h n o |
0000020 o g i e s I n ¢ .\n A | | R
0000030 i g h t s R e s e r v e d\n
000003f

Our program openedfile , which was a copy ofNOTICE, and then it wroté€'hello\n ”. After the call to
open, the file offset for the new open file was set zero. This meanswhiég¢ wrote 6 bytes intafile start-

ing at offset 0. The first six bytes in the file, which contaif@bpyri ”, have been overwritten by our program.
But write did just what it was expected to do. Write 6 bytes into the file starting at the file offset (0). Nothing
more, nothing less. It does not truncate the file (it shouldn’t!). It doesnsatrt It just writes.

If we change the program above, adding a second calfite , so that it executes this code
write(fd, "hello\n");
write(fd, "there\n");

we can see what is insiddile after running the program.

-53-

cat afile
hello
there
2002 Lucent Technologies Inc.
All Rights Reserved

. xd -c afile

0000000 h e I I o\n t h e r e\n 2 0 O
0000010 2 L uc e n t T e ¢c h n o |
0000020 o g i e s I n ¢ .\n A | | R
0000030 i g h t s R e s e r v e d\n
000003f

After the first call towrite , the file offset was 6. Therefore, the second write happen starting at offset 6 in the

file. And it wrote six more bytes. Once more, it did just its job, write bytes. The file length is the same. The num-
ber of lines changed because the number of newline characters in the file changed. The console advances one line
each time it encounters a newline, but it is just a single byte.

Figure 3.3 shows the elements involved in writing this file, after the first callrice , and before the sec-
ond call. The file descriptor, which we assume was 3, points to a data structure containing information about the
open file. This data structure keeps the file offset, to be used for the folloveiad) or write operation, and
record what the file was open for, e @QWRITE Plan 9 calls this data structureCan (Channel), and there is
one per file in use in the system. Besides the offset and the open mode, it contains all the information needed to
let the kernel reach the file server and perform operations on the file. Indeed, a Chan is just something used by
Plan 9 to speak to a server regarding a file. This may require doing remote procedure calls across the network, but
that is up to your kernel, and you can forget it.

File descriptor

table
0
1 Chan
2 offset: 6 —
3 mode: OWRITE
file:
n

hie[l|I]o[\n] .. [afile

Figure 3.3: The file offset for next operations is kept separate from the file descriptor.

We can useeek to write at a particular offset in the file. For example, the following code writes starting at
offset 10 into our original version affile

-54 -
int fd;

fd = open("afile", OWRITE);

seek(fd, 10, 0);

write(fd, "hello\n", 6);

close(fd);

The contents oéfile have six bytes changed, as it could be expected.

;. xd -c afile

0000000 C o py r i g ht h e I | o\n
0000010 2 L uc e nt T e ¢ h n o |
0000020 o g i e s I n ¢ .\n A | | R
0000030 i g h t s R e s e r v e d\n
000003f

How can we write new contents intfile , getting rid of anything that could be in the file before we write?
Simply by specifying toopen that we want taruncate the file besides opening it. To do so, we can do a bit-or
of the desired open mode a@ITRUNCa flag that requests file truncation. This program does so, and writes a
new string into our file.
fthello.c

#include <u.h>

#include <libc.h>

void
main(int , char* [])

{
int fd;

fd = open(“afile”, OWRITE|OTRUNC);
write(fd, "hello\n", 6);

close(fd);

exits(nil);

}

After running this programgfile contains just the 6 bytes we wrote:

. 8.thello
. cat afile
hello

’

The call toopen, caused the filafile to be truncated. If was empty, open for writing on it, and the offset for
the next file operation was zero. Thewjte wrote 6 bytes, at offset zero. At last, we closed the file.

What would the following program do to our new versiorefife ?

zeekhello.¢
#include <u.h>
#include <libc.h>

void
main(int , char* [])

{
int fd;

fd = open(“afile", OWRITE);
seek(fd, 32, 0);

write(fd, "there\n", 6);
close(fd);

exits(nil);

-55 -

All system calls are very obedient. They do just what they are asked to do. The sedikochanges the file off-
set to 32. Thereforeyrite must write six bytes at offset 32. This is the output ®r andxd on the new file
after running this program:

8.seekhello
o Is -/ afile
--r--r--r-- M 19 nemo nemo 38 Jul 9 18:14 afile
. xd -c afile
0000000 h e | | o\n000O0O00 0000 0000000000

0000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000020 t h e r e\n
0000026

The size is 38 bytes. That is the offset befanrite , 32, plus the six bytes we wrote. In the contents you see how
all the bytes that we did not write were set to zero by Plan 9. And we know a new thing: The size of a file corre-
sponds to the highest file offset ever written on it.

A variant of this program can be used to create files of a given size. To create a 1 Gigabyte file you do not
need to write that many bytes. A single write suffices with just one byte. Of course, that write must be performed
at an offset of 1 Gigabyte (minus 1 byte).

Creating large files in this way is different from writing all the zeroes yourself. First, it takes less time to
create the file, because you make just a couple of system calls. Second, it can be that your new ffite cloes
sume all its space in the disk until you really use it. Because Plan 9 knows the new size of the file, and it knows
you never did write most of it, it can just record the new size and allocate disk space only for the things you really
wrote. Reading other parts of the file yield just zeroes. There is no need to store all those zero bytes in the disk.

This kind of file (i.e., one created usirggek andwrite), is called afile with holes. The name comes
from considering that the file hd%ioles on it, where you did never write anything. Of course, the holes are not
really stored in a disk. It is funny to be able to store files for a total amount of bytes that exceeds the disk capac-
ity, but now you know that this can happen.

To append some data to a file, we can gsek to set the offset at the end of the file before calling write,
like in

fd = open("afile", OWRITE);

seek(fd, 0, 2); // move to the end

write(fd, bytes, nbytes);

For some files, like log files used to append diagnostic messages, or mail folders, used to append mail messages,
writing should always happen at the end of the file. In this case, it is more appropriate to aggesual only per-
mission bit supported by the Plan 9 file server:

chmod +a /sys/log/diagnostics
Is -1 /sys/log/diagnostics
a-rw-r--r-- M 19 nemo nemo 0 Jul 10 01:11 /sys/log/diagnostics

This guarantees that any write will happen at the end of existing data, no matter what the offset is. Bs#kg a

in all programs using this file might not suffice. If there are multiple machines writing to this file, each machine
would keep its own offset for the file. Therefore, there is some risk of overwriting some data in the file. However,
using theta permission bit fixes this problem once and for all.

3.3. Read games

To read a file it does not suffice to cattad once. This point may be missed when using this function for the
first few times. The problem is thatad does no guarantee that all the bytes in the file could be read in the first
call. For example, early in this chapter we did read from the console. Before typing a line, there is no way for
read to obtain its characters. The result in that when reading from the console our program did read one line at a
time. If we change the program to read from a file on a disk, it will probably read as much as it fits in the buffer
we supply for reading.

- 56 -

Usually, we are supposed to caflad until there is nothing more to read. That happens when the number
of bytes read is zero. For example, this program reads the wholdNfd&1CE, and prints what it can read each
time. The program is unrealistic, because usually you should employ a much larger read buffer. Memory is cheap
these days.
read.c
#include <u.h>
#include <libc.h>

void
main(int , char* [])

{

char buffer[10];
int nr;
int fd;

fd = open("/NOTICE", OREAD);

if (fd < 0)
sysfatal("open: %r");
for(;;{
nr = read(fd, buffer, sizeof buffer);
if (nr <=0)
break;
if (write(1, buffer, nr) != nr)
sysfatal(“write: %r");
}
exits(nil);

}

Although we did not check out error conditions in most of the programs in this chapter. This program does so.
Whenopen fails , it returns-1 . The program issues a diagnostic and terminates if that is the case. Also, after
callingread , it does not just check fonr == 0 , which means that there is nothing more to read. Instead, it
checks fomr <= 0, becauseead returns-1 when it fails. The call tavrite might fail as well. It returns the
number of bytes that could be written, and it is considered an error when this humber differs from the one you
specified.

3.4. Creating and removing files

Thecreate system call creates one file. It is very similardpen . After creating the file, it returns an open file
descriptor for the new file, using the specified mode. It accepts the same parameters used for open, plus an extra
one used to specify permissions for the new file encoded as a single integer.

This program creates its own versionaifle , without placing on us the burden of creating it. It does not
check errors, because it is just an example.

greate.g
#include <u.h>

#include <libc.h>

void
main(int , char* [])
{
int fd, n;
char msg[] = "a new file\n";

fd = create("afile", OWRITE, 0664);
write(fd, msg, strlen(msg));
close(fd);

exits(nil);

}

To test it, we remove our previous version &dile |, run this program, and a¢k andcat to print information

-57-

about the file and its contents.

rm afile

o Is afile

Is: afile: 'afile’ file does not exist

. 8.create

. Is -/ afile

--rw-r--r-- M 19 nemo nemo 11 Jul 9 18:39 afile
cat afile

a new file

In fact, there was no need to remaafle before running the program. If the file being created exigtsate
truncates it. If it does not exist, the file is created. In either case, we obtain a new file descriptor for the file.

Directories can be created by doing a bit-or of the integer con&t&tidIRwith the rest of the permissions
given tocreate . This sets a bit (called DMDIR) in the integer used to specify permissions, and the system cre-
ates a directory instead of a file.

fd = create("adir", OREAD, DMDIR|0775);

You cannot write into directories. That would be dangerous. Instead, when you create and remove files within the
directory, Plan 9 updates the contents of the directory file for you. If you modify the previous program to try to
create a directory, you must remove the line callivrige . But you should still close the file descriptor.

Removing a file is simple. The system cadinove removes the named file. This program is similarrio

mm.cr)
#include <u.h>
#include <libc.h>

void
main(int , char* [])

{

int i;

for (i=1;i < argc; i++)
if (remove(argv[i]) < 0)
fprint(2, "%s: %r\n", argv[0]);
exits(nil);

}

It can be used like the standamd(1) tool, to get rid of multiple files. Wheremove fails it alerts the user of the
problem.

. 8.rmrm.8 x.c afile
8.rm: ’'x.c’ file does not exist

Like other callsremove returns-1 when it fails. In this case we print the program naragg¢[0]) and the
error string. That suffices to let the user know what happen and take any appropriate action. Note how the pro-
gram iterates through command line arguments starting at 1. Otherwise, it would remove itself!

A directory that is not empty, and contains other files, cannot be removed tesimgve . To remove it,
you must remove its contents first. Plan 9 could remove the whole file tree rooted at the directory, but it would be
utterly dangerous. Think abouain /. The system commanan accepts optionr to recursively descend the
named file and remove it and all of its contents. It must be used with extreme caution. When a file is removed, it
is gone. There is nothing you can do to bring it back to life. Plan 9 does not haastabasketIf you are not
sure about removing a file, just don’t do it. Or move it/tmp or to some other place where it does not gets in
your way.

Now that we can create and remove files, it is interesting to see if a file does exist. This could be done by
opening the file just to see if we can. However, it is more appropriate to use a system call intended just to check if
we can access a file. It is called, perhaps surprisiraggess . For example, this code excerpt aborts the execu-
tion of its program when the file name fname does not exist:

- 58 -

if (access(fname, AEXIST) < 0)
sysfatal("%s does not exist", fname);

The second parameter is an integer constant that indicates what do yoaagass to check the file for. For
example AWRITEchecks that you could open the file for writingREADdoes the same for reading, aABEXEC
does the same for executing it.

3.5. Directory entries

Files have data. There are many examples above usingandxd to retrieve the data stored in a file. Besides,
files havemetadata i.e., data about the data. File metadata is simply what the system needs to know about the
file to be able to implement it. File metadata includes the file name, the file size, the time for the last modification
to the file, the time for the last access to the file, and other attributes for the file. Thus, file metadata is also known
asfile attributes.

Plan 9 stores attributes for a file in the directory that contains the file. Thus, the data structure that contains
file metadata is known asdirectory entry. A directory contains just a sequence of entries, each one providing
the attributes for a file contained in it. Let's see this in action:

. Ie

; cat.

An empty directory is an empty file.

touch onefile
i oxd-c.
0000000 B0OO M 00 130000 00 00 00 0000 00 bfal 01
0000010 0000000000a4010000\ Ibl D\ 1Ibl
0000020 D0O0O0O0O0O0O0OO0OO0OO0OO0OOO700 0 n e f i

0000030 |l e0400 n e m 00400 n e m 00400
0000040 n e m o
0000044

After creatingonefile in this empty directory, we see a whole bunch of bytes in the directory. Nothing that we
could understand by looking at them, although you can see how there are several strings, inwudingnd
onefile within the data kept in the directory.

For each file in the directory, there is an entry in the directory to describe the file. The format is indepen-
dent of the architecture used, which means that the format is the same no matter the machine that stored the file.
Because the machine using the directory (e.g., your terminal) may differ from the machine keeping the file (e.g.,
your file server), this is important. Each machine could use a different format to encode integers, strings, and
other data types.

We can double-check our belief by creating a second file in our directory. After doing so, the directory has
twice the size:

. touch another

. xd-c.
0000000 B0O0O ™M 001300000000 00000000c0alo0l
0000010 0000000000a4010000 ! 1bl D ! 1Ibl

0000020 DO0O0O0O0OOO0OOOOOOO0OO0O700 a N o t h
0000030 e r0400 n e m 00400 n e m 00400
0000040 n e m o BOO MO0O2130000 0000000000
0000050 00 bfal010000000000a4010000\r Ibl

0000060 D\r Ibl DO0OO0O0O0OO0O0O0O0O00O00O00700 o

0000070 n e f i | e0400 N e m 00400 n e
0000080 m 00400 n e m o
0000088

When programming in C, there are convenience functions that convert this portable (but not amenable) data struc-
ture into a C structure. The C data type declarelibinh that describes a directory entry is as follows:

- 59 -

typedef
struct Dir {
[* system-modified data */
ushort type; [* server type */
uint dev; [* server subtype */
[* file data */
Qid qid; [* unique id from server */
ulong mode; [* permissions */
ulong atime; /* last read time */
ulong mtime; /* last write time */
vlong length; /* file length */
char *name; /* last element of path */
char *uid; /* owner name */
char *gid; /* group name */
char *muid; /* last modifier name */
} Dir;

From the shell, we can use to obtain most of this information. For example,

. Is -Im onefile
[nemo] --rw-r--r-- M 19 nemo nemo 0 Jul 9 19:24 onefile

The file name ionefile . The fieldname within the directory entry is a string with the name. Just with
the name. An absolute path to refer to this file would include all the names from that of the root directory
down to the file; each component separated by a slash. But the file nameos@ige

The times for the last access and for the last modification of the file (this one printéd ogire kept at
atime and mtime respectively. These dates are codified in seconds since the epoch, as we saw for
/dev/time

The length for the file is zero. This is stored at fiddohgth in the directory entry. The file is owned by
usernemo and belongs to the grougemo. These values are stored as string, using the figidls (user id)
andgid (group id) respectively.

The fieldmode records the file permissions, also known as the mode (that iscwimod has that name, for
“change modg. Permissions are encoded in a single integer, as we saw. For this file mode w@@dde

The file was last modified by useremo, and this value is encoded as a string in the directory entry, using
field muid (modification user id).

The fieldstype , dev, andqid identify the file. They deserve a separate explanation on their own that we
defer by now.

To obtain the directory entry for a file, i.e., its attributes, we candissgtat . This function uses the actual sys-
tem call,stat , to read the data, and return®& structure that is more convenient to use in C programs. This
structure is stored in dynamic memory allocated withlloc by dirstat , and the caller is responsible for
callingfree onit.

The following program gives some information abdNOTICE, nothing thatls could not do, and pro-

duces this output when run:

. 8.stat

file name: NOTICE
file mode: 0444
file size: 63 bytes

’

-60 -

#include <u.h>
#include <libc.h>

void
main(int , char* [])

{
Dir* d;

d = dirstat("/NOTICE");
if (d == nil)

sysfatal("dirstat: %r");
print(“file name: %s\n", d->name);
print(“file mode: 0%o0\n", d->mode);
print(“file size: %d bytes\n", d->length);
free(d);
exits(nil);

}

Note that the program callddee only once, for the whol®ir . The strings pointed to by fields in the structure
are stored along with the structure itself in the sanatloc -allocated memory. Callinfee once suffices.

An alternative to using this function is usimyfstat , Which receives a file descriptor instead of a file
name. This function call§stat , which is another system call similar gtat (but receiving a file descriptor
instead of a file name). Which one to use depends on what do you have at hand, a name, or a file descriptor.

Because directories contain directory entries, reading from a directory is very similar to what we have just
done. The functiomead can be used to read directories as well as files. The only difference is that the system
will read only an integral number of directory entries. If one more entry does not fit in the buffer you supply to
read , it will have to wait until you read again.

The entries are stored in the directory in a portable, machine independent, and not amenable, format. There-
fore, instead of usingead , it is more convenient to usdirread . This function callsead to read the data
stored in the directory. But before returning to the calleyripackshem into a, more convenient, array Dir
structures.

As an example, the next program lists the current directory, wimmgad to obtain the entries in it.

Running the program yields the following output. As you can see, the directory was being used to keep a
few C programs and compile them.

. 8.Isdot
8.Isdot
create.8
create.c
Isdot.8
Isdot.c

3

-61 -

fsdot.c
#include <u.h>
#include <libc.h>

void
main(int , char* [])
{
Dir* dents;
int ndents, fd, i;

fd = open(".", OREAD);

if (fd < 0)
sysfatal("open: %r");
for(;;{
ndents = dirread(fd, &dents);
if (ndents == 0)
break;
for (i = 0; i < ndents; i++)
print("%s\n", dents[i].name);
free(dents);
}
exits(nil);

}

The array of directory entries is returned fraditread using a pointer parameter passed by reference (We
know, C passes all parameters by value; The function receives a pointer to the pointer). Such array is allocated by
dirread usingmalloc , like before. Therefore, the caller must cibe (once) to release this memory. The
number of entries in the array is the return value for the function. teéle®l would do, when there are no more
entries to be read, the function returns zero.

Sometimes it is useful to change file attributes. For example, changing the length to zero may truncate the
file. A rename within the same directory can be achieved by changing the name in the directory entry. Permis-
sions can be changed by updating the mode in the directory entry. Some of the attributes cannot be updated. For
example, it is illegal to change the modification type, or any oftjipe , dev, andqgid fields.

The functiondirwstat is the counterpart odlirstat . It works in a similar way, but instead of reading
the attributes, it updates them. New values for the update are taken flim atructure given as a parameter.
However, the function ignores any field set to a null value, to allow you to change just one attribute, or a few
ones. Beware that zero is not a null value for some of the fields, because it would be a perfectly legal value for
them. The functiomulldir is to be used to null all of the fields in a givénr .

Here is an example. The next program is similachgrp (1), change group, and can be used to change the
group for a file. Themain function iterates through the file name(s) and calthgrp function to do the actual
work for each file.

-62 -

©hgrp.c
#include <u.h>
#include <libc.h>

void
chgrp(char* gid, char* fname)

{
Dir d;

nulldir(&d);
d.gid = gid;
if (dirwstat(fname, &d) < 0)
fprint(2, "chgrp: wstat: %r\n");
}

void
main(int argc, char* argv[])
{

int i;

if (argc < 31
fprint(2, "usage: %s gid file...\n", argv[0]);
exits("usage");

}

for (i = 2; i < argc; i++)
chgrp(argv[1], argvli]);

exits(nil);

}

The interesting part is the implementation of ttlegrp function. It is quite simple. Internallydirwstat

packsthe structure into the portable format, and callgat (the actual system call). As a remark, there is also a
dirfwstat variant, that receives a file descriptor instead of a file name. It is the countermhrtsbat and

uses thdwstat system call. Other attributes in the directory entry can be updated as done above for the group
id.

The resulting program can be used like the mgrp(1)

. 8.chgrp planb chgrp.c chgrp.8

. Is-Ichgrp.c chgrp.8

--rw-r--r-- M 19 nemo planb 1182 Jul 10 12:09 chgrp.8
--rw-r--r-- M 19 nemo planb 377 Jul 10 12:08 chgrp.c

3.6. Listing files in the shell

It may be a surprise to find out that there is now a section with this title. You know all about listing files. It is a
matter of usings and other related tools. Well, there is something else. The shell on its own knows how to list
files, to help you type names. Look at this session:

cd $home
. Ie
bin lib tmp
. echo *
bin lib tmp

First, we usedc to list our home. Later, we used just the shell. It is clear #@io is simply echoing its argu-
ments. It knows nothing about listing files. Therefore, the shell had to supply lib , andtmp, as the argu-
ments forecho (instead of supplying th& ”). It could be either the shell or echo the one responsible for this
behavior. There is no magic, and no other program was involved on this command line.

-63 -

The shell gives special meaning to certain characters (we already saWtiyand® ”). One of them is™*”.
When the a command line contains a word thati§ it is replaced with the names for all the files in the current
directory. Indeed}* ” works for all directories:

. lc bin
386 rc
. echo bin/*

bin/386 bin/rc

’

In this case, the shell replac&ih/* with two names before running echbin/386 andbin/rc . This is
calledglobbing, and it works as follows. When the shell reads a command line, it looki#daname patterns

A pattern is an expression that describes file names. It can be just a file name, but useful patterns can include spe-
cial characters liké*”. The shell replaces the pattern with all file namesstching the pattern.

For example? matches with any sequence of characters not contafihihgTherefore, in this directory
;e
bin book lib tmp
the patterrt matches withbin , book, lib , andtmp:
; echo*
bin book lib tmp
The patterrb* matches with any file name that has an initilal’ followed by “*”, i.e, followed by anything. This
means
;. echo b*
bin book
The patterrti* matches with anything, then an and then anything:
;. echo *i*
bin lib
Another example
. echo *b*
bin book lib

showing that the part of the name matched*bgan be also an empty string! Patterns like this one nibarfile
name has & in it.

Patterns may appear within path names, to match against different levels in the file tree. For example, we
might want to search for the file containitgy , and this would be a brute force approach:

; Is/ls
Is: /ls: ’/Is’ file does not exist
Not there. Let’s try one level down
. Is/*ls
/bin/ls
Found! But let's assume it was not there either.
o Is /s
It might be at/usr/bin/ls . Not in a Plan 9 system, but we did not know. E&cin the pattern*/*/ls

matches with any file name. Therefore, this patterns meaysfile nameds , inside any directory, which is
inside any directory that is found &t

This mechanism is very powerful. For example, this directory contains a lot of source and object files. We
can use a pattern to remove just the object files.

-64 -

;e

8.out echo.c err.c open.c
echo.8 err.8 open.8 sleep.c
;orm*8

The shell replaced the pattetr8 with any file name terminated witt8 . Thereforerm received as arguments
all the names for object files.

N o4
8.0ut echo.c err.c open.c sleep.c

Patterns may contain ‘@”, which matches a single character. For example, we know that the linkers generate
output files name@®.out , 5.out , etc. This removes any temporary binary that we might have in the directory:

rm ?.out

Any file name containing a single character, and thmnt , matches this pattern. The shell replaces the pattern
with appropriate file names, and then executes the command line. If no file name matches the pattern, the pattern
itself is untouched by the shell and used as the command argument. After the previous command, if we try again

. rm 2.out
rm: ?.out; '?.out’ file does not exist

Another expression that may be used in a pattern is a series of characters between square brackets. It matches an
single character within the brackets. For example, instead of &g we might have usefb8].out inthe

command line above. The only file names matching this expressiob.ate and 8.out , which were the

names we meant.

Another example. This lists any C source file (any string followed by a single dot, and then edttaran
h).

;e % [ch]

As a shorthand, consecutive letters or numbers within the brackets may be abbreviated by-ubi&tgveen just
the first and the last ones. An examplg@s9] , which matches again any single digit.

The directory/n/dump keeps a file tree that uses names reflecting dates, to keep a copy of files in the sys-
tem for each date. For exampla/dump/2002/0217 is the path for the dump (copy) made in February 17th,
2002. The command below uses a pattern to list directories for dumps made the 17th of any month not after
June, in a year beyond 2000, but ending in 2 (i.e., just 2002 as of today).

o Is /n/dump/2*2/0[1-6]17
/n/dump/2002/0117
/n/dump/2002/0217
/n/dump/2002/0317
/n/dump/2002/0417
/n/dump/2002/0517
/n/dump/2002/0617

In general, you concoct patterns to match on file names that may be of interest for you. The shell knows nothing
about the meaning of the file names. However, you can exploit patterns in file names using file name patterns.
Confusing?

To ask the shell not to touch a single character in a word that might be otherwise considered a pattern, the
word must be quoted. For example,

N o4

bin lib tmp
. touch *

. echo *

* bin lib tmp

Because thé& for touch was quoted, the shell took it verbatim. It was not interpreted as a pattern. However, in
the next command line it was used unquoted and taken as a pattern. Removing the funny file we just created is
left as an exercise. But be careful. Remember what

- 65 -

om*

would do!

3.7. Buffered Input/Output

The interface provided bgpen, close , read , andwrite suffices many times to do the task at hand. Also, in
many cases, it is just the more convenient interface for doing 1/O to files. For exaraplanust just write what
it reads. It is just fine to useead andwrite for implementing such a tool. But, what if our program had to
read one byte at a time? or one line at atime? We can experiment using the program below. It is agsjrize
copies one file into another, but using the size for the buffer that we supply as a parameter.
fhep.ch

#include <u.h>

#include <libc.h>

static void

usage(void)

{
fprint(2, "usage: %s [-b bufsz] infile outfile\n", argv0);
exits("usage");

}

void

main(int argc, char* argv[])

{
char* buf;
long nr, bufsz = 8*1024;
int infd, outfd,;

ARGBEGIN{
case ’b:
bufsz = atoi(EARGF(usage()));
break;
default:
usage();
JARGEND;
if (argc = 2)
usage();
buf = malloc(bufsz);
if (buf == nil)
sysfatal("no more memory");
infd = open(argv[0], OREAD);
if (infd < 0)
sysfatal("%s: %s: %r", argv0, argv[0]);
outfd = create(argv[1], OWRITE, 0664);
if (outfd < 0)
sysfatal("%s: %s: %r", argvO0, argv[1]);
for(;;){
nr = read(infd, buf, bufsz);
if (nr <=0)
break;
write(outfd, buf, nr);
}
close(infd);
close(outfd);
exits(nil);

}

We are going to test our new program using a file created just for this test. To create the file, deb UBeis is
a tool that is useful to copy bytes in a controlled way from one place to another (its name staddsiferto
devicg. Using this command

- 66 -

; dd -if /dev/zero -of /tmp/sfile -bs 1024 -count 1024
1024+0 records in

1024+0 records out

. Is -l /tmp/sfile

--rw-r--r-- M 19 nemo nemo 1048576 Jul 29 16:20 /tmp/sfile

we create a file with 1 Mbyte of bytes, all of them zero. The optibn lets you specify the input file fodd, i.e.,

where to read bytes from. In this case, we uidl/zero , which a (fake!) file that seems to be an unlimited
sequence of zeroes. Reading it would just return as many zeroes as bytes you tried to read, and it would never give
an end of file indication. The optiorof lets you specify which file to use as the output. In this case, we created

the file /tmp/sfile , Which we are going to use for our experiment.

This tool, dd, reads from the input file one block of bytes after another, and writes each block read to the
output file. A block is also known asr@cord as the output from the program shows. In our case, we sed
(block size) to askdd to read blocks of 1024 bytes. We asked to copy just 1024 blocks, using itsount
option. The result is thattmp/sfile has 1024 blocks of 1024 bytes each (therefore 1 Mbyte) copied from
/dev/zero

We are using a relic that comes from ancient times! Times when tapes and even more weird artifacts were
very common. Many of such devices required programs to read (or write) one record at a timeddUsiag very
convenient to duplicate one tape onto another and similar things. Because it was not common to read or write par-
tial records, the diagnostics printed g show how many entire records were red824 here), and how many
bytes were read from a last but partial recot@ (n our case). And the same for writing. Today, it is very com-
mon to see always0 for both the data read in, and the data written out. By the way, for our little experiment we
could have used jusid, instead of writing our own dumb version for it, but it seemed more appropriate to let you
read the code to review file 1/0O once more.

So, what would happen when we copy our file using our default buffer size of 8Kbytes?

;. time 8.bcp /tmp/sfile /tmp/dfile
0.01u 0.01s 0.40r 8.bcp /tmp/sfile /tmp/dfile

Using the commantime , to measure the time it takes for a command to run, we see that using a 8Kbyte buffer

it takes 0.4 seconds of real tim6.40r) to copy a 1Mbyte file. As an asidéime reports also tha8.bcp

spent 0.01 seconds executing its own cod®Xu) and 0.01 seconds executing inside the operating system
(0.01s), e.g., doing system calls. The remaining 0.38 seconds, until the total of 0.4 seconds, the system was
doing something else (perhaps executing other programs or waiting for the disk to read or write).

What would happen reading one byte at a time? (and writing it, of course).

;. time 8.bcp -b 1 /tmp/sfile /tmp/dfile
9.01u 56.48s 755.31r 8.bcp -b 1 /tmp/sfile /tmp/dfile

Our program isamazingly slow It took 755.31 seconds to complete. That is 12.6 minutes, which is an eon for a
computer. But it is the same program, we did not change anything. Just this time, we read one byte at a time and
then wrote that byte to the output file. Before, we did the same but for a more reasonable buffer size.

Let's continue the experiment. What would happen if our program reads one line at a time? The source file
does not have lines, but we can pretend that all lines have 80 characters of one byte each.

;. time 8.bcp -b 80 /tmp/sfile /tmp/dfile
0.11u 0.74s 10.38r 8.bcp -b 80 /tmpl/sfile tmp/dfile

Things improved, but nevertheless we still need 10.38 seconds just to copy 1 Mbyte. What happens is that mak-
ing a system call is not so cheap, at least it seems very expensive when compared to making a procedure call. For
a few calls, it does not matter at all. However, in this experiment it does. Using a buffer of just one byte means
making 2,097,152 system calls! (1,048,576 to read bytes and 1,048,576 to write them). Using an 8Kbyte buffer
requires just 128 calls (.e., 1,048,576 / 8,192). You can compare for yourself. In the intermediate experiment,
reading one line at a time, it meant 26,214 system calls. Not as many as 2,097,152, but still a lot.

How to overcome this difficulty when we really need to write an algorithm that reads/writes a few bytes at a
time? The answer, as you probably know, is just to use buffering. It does not matter if your algorithm reads one
byte at a time. It does matter if you are making a system call for each byte you read.

-67 -

The bio(2) library in Plan 9 provides buffered input/output. This is an abstraction that, although not pro-
vided by the underlying Plan 9, is so common that you really must know how it works. The idea is that your pro-
gram creates a Bio buffer for reading or writing, calle@iabuf . You program reads from thBiobuf , by
calling a library function, and the library will catiead only to refill the buffer each time you exhaust its con-
tents. This is our (in)famous program, but this time we use Bio.

#include <u.h>
#include <libc.h>
#include <bio.h>

static void
usage(void)
{
fprint(2, "usage: %s [-b bufsz] infile outfile\n", argv0);
exits("usage");
}
void
main(int argc, char* argv[])
{
char* buf;
long nr, bufsz = 8*1024;
Biobuf* bin;
Biobuf* bout;
ARGBEGIN{
case’'b”
bufsz = atoi(EARGF(usage()));
break;
default:
usage();
JARGEND;
if (argc 1= 2)
usage();
buf = malloc(bufsz);
if (buf == nil)
sysfatal("no more memory");
bin = Bopen(argv[0], OREAD);
if (bin == nil)
sysfatal("%s: %s: %r", argv0, argv[0]);
bout = Bopen(argv[1], OWRITE);
if (bout == nil)
sysfatal("%s: %s: %r", argv0, argv[1]);
for(;:){
nr = Bread(bin, buf, bufsz);
if (nr <=0)
break;
Bwrite(bout, buf, nr);
}
Bterm(bin);
Bterm(bout);
exits(nil);
}

The first change you notice is that to use Bio the he&dmh must be included. The data structure representing
the Bio buffer is aBiobuf . The program obtains two ones, one for reading the input file and one for writing the
output file. The functiorBopen is similar toopen, but returns a pointer to Biobuf instead of returning a file
descriptor.

- 68 -

sig Bopen
Biobuf* Bopen(char *file, int mode)

Of course Bopen mustcall open to open a new file. But the descriptor returned by the underlying calptn
is kept inside thdiobuf , because only routines frohio(2) should use that descriptor. You are supposed to read
and write from theBiobuf

To read frombin , our input buffer, the program calBread . This function is exactly likeread , but
reads bytes from the buffer when it can, without calliregd . ThereforeBread does not receive a file descrip-
tor as its first parameter, it receives a pointer toBiwbuf used for reading.

;. Sig Bread
long Bread(Biobufhdr *bp, void *addr, long nbytes)

The actual system calfead , is used byBread only when there are no more bytes to be read from the buffer,
e.g., because you already read it all.

To write bytes to &lobuf |, the program useBwrite . This is towrite whatBread istoread .

;. Sig Bwrite
long Bwrite(Biobufhdr *bp, void *addr, long nbytes)

The call toBterm releases 8iobuf , including the memory for the data structure. This closes the file descriptor
used to reach the file, after writing any pending byte still sitting in the buffer.

sig Bterm
int Bterm(Biobufhdr *bp)

As you can see, botBterm andBflush return an integer. That is how they report errors. They can fail because
it can be that the file cannot really be written (e.g., because the disk is full), but you will only know when you try
to write the file, which does not necessarily happeBwrite

How will our new program behave, now that it uses buffered input/output? Let’s try it.

;. time 8.biocp /tmp/sfile /tmp/dfile

0.00u 0.03s 0.38r 8.bcp /tmpl/sfile /tmp/dfile

;. time 8.biocp -b 1 /tmp/sfile /tmp/dfile

0.00u 0.13s 0.31r 8.bcp -b 1 /tmp/sfile /tmp/dfile

;. time 8.biocp -b 80 /tmp/sfile /tmp/dfile

0.00u 0.02s 0.20r 8.bcp -b 80 /tmp/sfile tmp/dfile

Always the same!. Well, not exactly the same because there is always some uncertainty in every measurement. In
this case, give or take 2/10th of a second. But in any case, reading one byte at a time is far from taking 12.6 min-
utes. Bio took care of using a reasonable buffer size, and caltiad only when necessary, as we did by our-
selves when using 8Kbyte buffers.

One word of caution. After callingvrite , it is very likely that our bytes are already in the file, because
there is probably no buffering between your program and the actual file. However, after a Baltite it is
almost for sure that your bytes ametin the file. They will be sitting in théiobuf , waiting for more bytes to be
written, until a moment when it seems reasonable for a Bio routine to do the actual waileo . This can hap-
pen either when you fill the buffer, or when you cBlierm , which terminates the buffering. If you really want to
flush your buffer, i.e., to send all the bytes in it to the file, you may Béllish

. Sig Bflush
int Bflush(Biobufhdr *bp)

To play with this, and see a couple of other tools provided by Bio, we are going to reimplement ougdlittle
program but using Bio this time.

- 69 -

thiocat.cr
#include <u.h>
#include <libc.h>
#include <bio.h>

void
main(int , char* [])

{

Biobuf bin;
Biobuf bout;
char* line;
int len;

Binit(&bin, 0, OREAD);
Binit(&bout,1, OWRITE);
while(line = Brdline(&bin, "\n")){
len = Blinelen(&bin);
Bwrite(&bout, line, len);

}

Bterm(&bin);
Bterm(&bout);
exits(nil);

}

This program uses twBiobufs , like the previous one. However, we now want one for reading from standard
input, and another to write to standard output. Because we already have file descriptors 0 and 1 open, it is not nec-
essary to calBopen. The functionBinit initializes aBiobuf for an already open file descriptor.
. Sig Binit
int Binit(Biobuf *bp, int fd, int mode)

You must declare your owBiobuf . Note that this timebin andbout arenot pointers, they are the actual
Biobufs used. Once we have obin andbout buffers, we might use any other Bio function on them, like
before. The call t@term terminates the buffering, and flushes any pending data to the underlying file. However,
because Bio did not open the file descriptor for the buffer, it will not close it either.

Unlike the previous program, this one reads one line at a time, because we plan to use it with the console.
The functionBrdline reads bytes from the buffer until the end-of-line delimiter specified by its second parame-
ter.
;. Sig Brdline
void* Brdline(Biobufhdr *bp, int delim)

We used\n’ , which is the end of line character in Plan 9. The function returns a pointer to the bytes read, or
zero if no more data could be read. Each time the program reads a line, it writes the line to its standard output
throughbout . Theline returned byBrdline is not a C string. There is not a final null byte after the line. We
could have use®rdstr , which returns the line read in dynamic memory (allocated witloc), and termi-

nates the line with a final null byte. But we did not. Thus, how many bytes must we write to standard output? The
functionBlinelen returns the number of bytes in the last line read V@tHline

sig Blinelen
int Blinelen(Biobufhdr *bp)

And that explains the body of thehile in our program. Let’s now play with our cat.

. 8.biocat

one little

cat was walking.
control-d

one little

cat was walking.

3

-70 -

No line was written to standard output until we typashtrol-d The program did caBwrite , but this function
kept the bytes in the buffer. Whaérdline returned an EOF indication, the callBterm terminated the output
buffer and its contents were written to the underlying file. If we modify this program to add a call to

Bflush(&bout);

after the one t®@write , this is what happens.

. 8.biocat
Another little cat
Another little cat
did follow

did follow
control-d

3

The call toBflush flushes the buffer. Of course, it is now a waste to heat at all. If we are flushing the
buffer after each write, we could have used jwsite , and forget aboubout .

Problems

1 Use the debuggeacid , to see that a program reading from standard input in a window is indeed waiting

insideread while the system is waiting for you to type a line in the window.
Hint: Useps to find out which process is running your program.
2 Implement thesat(1) utility without looking at the source code for the one in your system.

3 Compare your program from the previous problem with the one in the system. Locate the one in the system

using a command. Discuss the differences between both programs.

4 Implement a version ofhmod1) that accepts an octal number representing a new set of permissions, and

one or more files. The program is to be used like in
;. 8.out 0775 filel file2 file3

5 Implement your own program for doing a long listing like
oo Is-/

would do.

6 Write a program that prints all the files contained in a directory (hierarchy) along with the total number of
bytes consumed by each file. If a file is a directory, its reported size must include that of the files found

inside. Compare witldlu(1).

4 — Parent and Child

4.1. Running a new program

In chapter 2 we inspected the process that is executing your code. This process was created by Plan 9 in response
to a request made by the shell. Until now, we have created new processes only by asking the shell to run new
commands. In this chapter we explore how to create new processes and execute new programs by ourselves.

You may think that the way to start a new process to run a program is by executing a single system call
(something likerun("/bin/Is") for executings). That is not the case. There are two different system calls
involved in the process. One creates a new process, the other executes a new program. There are several reason
for this:

e One reason is that you may want to start a new process just to have an extra flow of control for doing some-
thing. In this case, there would be no new program to execute. Thus, it makes sense to be able to create a
new process (e.g., a new flow of control) just for its own sake.

e Another reason is that you may want to customize the environment for the new process (e.g., adjust its file
descriptors, change its working directory, or any other thimgfpreit executes the new program. It is true
that arun() system call might include parameters to specify all things you may want to customize. Such
call would have countless parameters! It is far more simple to let you use the programming language to cus-
tomize whatever you want in the process before it runs a new program.

Before going any further, this is a complete example using both system calls. This program creates a new process
by callingfork , and executefin/Is in the new process by callirgxecl :

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{
switch(fork()){

case -1:
sysfatal(“fork failed");
case 0:
execl("/bin/ls", "Is", nil);
break;
default:
print("ls started\n");
}
exits(nil);

}

The process running this program proceeds executiaig , and then callfork . At this point, a new process is
created as an exact clone of the one we had. Both processes continue execution returniogkfrontror the
original process (thparent process, fork returns the pid for the new process. Because this is a positive num-
ber, it enters thelefault case. For the new process (ttlald procesy, fork returns zero. So, the child pro-
cess continues executingedse 0 . The child callsexecl , which clears its memory and loads the program at
/bin/ls for execution.

We will now learn about each call at a time, to try to understand them well.

-72-

4.2. Process creation
The system callork creates an exactoneof the calling process. What does this mean? For this program

mnefork.c
#include <u.h>
#include <libc.h>

void

main(int, char*[])

{
print(“one\n");
fork();
print(“fork\n");
exits(nil);

}

This is the output

. 8.onefork
one
fork
fork

The firstprint was first executed. After that, we can deace the text for the secongdrint . Indeed, it exe-

cuted twice. When we asked the shell to &ionefork , it created a process to run our program. This process
provides the flow of control that, for us, startsmagin and proceeds until the call gxits . Our process obeys

the behavior we expect. It executes the first line, then the next, and so on until it dies. At some point, this process
makes a call tdork , and that creategnotherprocess that proceeds executing friork one line after another

until it dies.

This can be seen in figure 4.1. The figure depicts the state for both processes at different points in time.
Time increases going down in the figure. The arrows in the figure represent the program counter. Initially, only
the parent exists, it executes the instructions for the firisit . Later, the parent calf®rk . Later, during the
system call, a clone, i.e, the child, is created as a copy of the original. This means that the memory of the child is a
copy of the memory of the parent. This memory includes the code, all the data, and the stack! Because the child
is a copy, it will return from théork call like the parent will; Its registers are also (almost) a copy.

From now on, we daot know in which order they will execute, and we do not know for how much time
one process will be executing each time it is given the processor. The figure assumes that the child will execute
now print("“fork\n") and then the parent will have enough time to complete its execution, and the child
will at last execute its remaining instructions. But we do not know. The system may assign the processor in turns
to these and other processes in any other way. Perhaps the parent has time to complete right aftiarkalling
and before the child starts executing, or perhaps it will happen just the opposite.

The child executetdependently from the parent. For it, it does not matter what the parent does. For the
parent, it does not matter what the child does. That is the process abstraction. You get a new, separate, stand-
alone, flow of control together with everything it needs to do its job.

To write your programs, did you have to think about what the shell program was doing? You never did.
You wrote your own program (executed by your own process) and you foogopletelyabout other processes in
the system. The same happens here. In Plan 9, when a process has offspring, the child leaves the parent’s house
immediately.

Because the child is a copy, and all its memory is a copy of the parent’s, variables in the child start with the
values they had by the time of tlierk . From there on, when you program, you must keep in mind that each
variable you use may have one value for the parent and another for the child. You just fakgbence the sys-
tem call name) the flow of control at tHerk , and think separately from there on for each process. To check out
that you really understand this, try to say what this program would print.

-73-

Parent
r-—-—~>~>"~>"~>"~>">~ =~~~ a
PC | 1
—= print("one\n"); |
: fork(); :
| print(“fork\n"); |
| |
1 exits(nil); I
| |
| |
L -
Parent
r-—-—~>~>"~>"~>"~>">~ =~~~ a

print("one\n");
——= fork();
print("fork\n");

exits(nil);
Lo o o___ 1
Parent Child
rcTTT T T T T T T T hl e = B
| | | i
pC ' print(‘one\n’); : | print("one\n"); |
— =i fork(; j et fork(); |
| print(“fork\n"); | | print(“fork\n"); |
| | | i
1 exits(nil); [1 exits(nil); |
| | | i
| | | |
Flow of control b B L J
Child
=
! |
| print("one\n"); |
! |
c ! fo_rk(), !
——= print("fork\n"); |
! |
1 exits(nil); I
! |
Lo |
Parent
—\
! |
| print("one\n®); |
! |
fork();
PC : OT 0 : Child’s flow
———= print("fork\n"); |
! |
1 exits(nil); I
! |
Lo |
Parent
—‘
! |
| print("one\n"); |
| fork(); !
| . " " |
pC : prlrlt(f.ork\n); :
——= exits(nil); I
| |
Lo |
Child
I —\
! |
| print("one\n"); |
| fork(); !
c : print(“fork\n"); 1
! |
——= exits(nil); I
! |
Lo |

Figure 4.1: The call to fork creates a clone of the original process. Both proceed from there.

ntfork.c
#include <u.h>
#include <libc.h>

void

-74 -

main(int, char*[])

{

int i;

i=1,

fork();

i++;
print("i=%d\n", i);
exits(nil);

}

The variable is initialized to1 by the only process we have initially. After calliigrk , each process (parent
and child) increment#’s own copy of the variable. The variableof the parent becomeX and that of the child
become? as well. Finally, each process will print its variable, but we will always get this output:

8.intfork

2
2

After calling fork , you may want to write aif that makes the child do something different from the parent. If
you could not do this, they would be viruses, not processes. Fortunately, it is simple. We have sderkhow
returns two times. Only the parent calls it, but it returns for the parent (in the parent process) and for the child (in
the child process). The return value differs. This program

mhild.c

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

switch(fork()){
case -1:
sysfatal(“fork failed\n");
case 0:
print("l am the child\n");
break;
default:
print("l am the parent\n");
}
exits(nil);

}

produces the following output

; 8.child
I am the child
| am the parent

To the parentfork returns the pid of the child, which we know is greater than zero. To the dbilkl, always
returns zero. Therefore, we can write different code to be executed in the parent and the child after calling fork.
Both processes have their own copy for all the code, but they can follow different paths from there on.

Whenfork fails, it returns-1 , and we should always check for errors. Of course when it fails there would
be no child. But otherwise, both processes execute different coddaker. In which order? We do not know.
And we should not care! Did you care if your shell executed its code before or after the code in your programs?
You forgot about the shell when writing your programs. Do the same here. The program above might produce
this output instead

. 8.child
| am the parent
| am the child

-75-

Let's have some fun. This is a runaway program. It creates a child and then dies. The child continues playing the
same game. This is a nasty program because it is very hard (or impossible) to kill. When you are prepared to kill
it, the process has gone and there is noone to Kill. But there is another process taking its place!
diehard.c

#include <u.h>

#include <libc.h>

void
main(int, char*[])
{
while(fork() == 0)
; /I catch me!
exits(nil);

}

This version is even more nasty. It creates processes exponentially, which might happen to you some day when
you make a mistake calling fork. Once the system cannot cope with more processes, there will be nothing you
could do but rebooting the machine. Try it as the last thing do you in one of your sessions so that you could see
what happens.

mabbits.c

#include <u.h>

#include <libc.h>

void

main(int, char*[])

{
Il just like rabbits...
while(fork())

exits(nil);

4.3. Shared or not?

Fork creates a clone process. Because the child is a clone, it has its own set of file descriptorsgoM/hen
returns, the descriptors in the child are a copy of those in the parent. However, that is the only thing copied.

Of course, the files referenced by the descriptors are not copied. The Chan data structures that maintain the
offset for the open files are not copied either. Figure 4.2 shows both a parent and a child just aftefaridling
showing file descriptors for both. This figure may correspond to the following program.

hefore.c
#include <u.h>
#include <libc.h>

void
main(int, char*[])

{
int fd;

fd = create("afile", OWRITE, 0644);
write(fd, "hello\n", 6);
if (fork() == 0)

write(fd, “child\n", 6);
else

write(fd, "dad\n", 4);
close(fd);
exits(nil);

-76 -

Parent Child

process
process

File descriptor

table gltﬁéjesc.
(1) ——1 = Jdev/cons 0
5 —— = offset: 3245 s: ;
3 3
n afile
offset: 6 ‘ :

Figure 4.2: The child has a copy of the file descriptors that the parent had.

Initially, the parent had standard input, output, and error open. All of them went t@é&écons . Then, the
parent opens (i.e., created)le , and file descriptor 3 is allocated. It points to a (Chan) data structure that main-
tains the offset (initially 0), and the reference to the actual file. After writing 6 bytes, the offset becomes 6.

At this point,fork creates the child as a clone. It has a copy of the parent’s file descriptors, but everything
else is shared. Of course, if either process opens new files,dfisatswould not be shared. For each open you
get an all new file offset. What would be the contentsdfile after running this program?

8.before
. cat afile
hello
child
dad

Each process callsrite . the child’'s write updates the file and advances the offset by 6. The next write does the
same. The order othild anddad may differ in the output, depending on which process executes first its
write . Both will be there.

Compare what happen before with the behavior for the next program. The program is very similar. The par-
ent tries to writedad to a file, and the child tries to writehild . According to our experience, the file should
have both strings in it after the execution.

-77 -

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{
int fd;

if (fork() == 0){
fd = open(“afile", OWRITE);
write(fd, “child\n", 6);

}else {
fd = open(“afile", OWRITE);
write(fd, "dad\n", 4);

}

close(fd);

exits(nil);

}

But this is what happens:

;. rm afile
. touch afile

. 8.after

. cat afile

dad

d

. xd -c afile

0000000 d a d\n d\n
0000006

Why? Because each process had its own file descriptor for the file, that now is not sharing anything with the other
process. In the previous program, the descriptors in both processes came from the same open: They were sharing
the offset. When the child wrote, it advanced the offset. The parent found the offset advanced, and could write
past the child’s output.

But now, the parent opens the file, and gets its own offset (starting at 0). The child does the same and gets
its own offset as well (also 0). One of them writes, in this case the child wrote first. That advances its own offset
for the file. The other offset stays at 0. Therefore, both processes overwrite the same part of the file.

It could be that the parent executesvisite before the child, in which case we would get this, which
would be also an overwrite:

. cat afile
child

There is one interesting thing to learn here. We have said that eittiier (parent’s and child’s) can execute
before the other one. Couldn't it be thaart of awrite is executed and then part of the other? In principle it
could. But in this case, it will never happen.

Plan 9 guarantees that a singlete to a particular file is fully executed and not mixed with other writes
to the same file. This means that if there are tmate calls being made for the same file, oneistexecute
before the other. For different files, they could execute simultaneously (i.e., concurrently), but not for the same
file in Plan 9.

When one operation is guaranteed to execute completely without being interrupted, it isatated The
Plan 9write system call is atomic at least for writes on the same file and when the number of bytes is not large
enough to force the system to do several write operations to implement your system call. In our system this hap-
pens for writes of at most 8Kbytes.

-78 -

4.4. Race conditions

What you just saw is very important. It is not to be forgotten, or you risk going into a debugging Inferno. When
multiple processes work on the same data, extra care is to be taken. You saw how the final valile for
depends on which processfaster, i.e., gets more processor time, and reaches a particular point in the code earlier
than another process. Because the final result depends on this race, its said that the progracehamdition.

You are entering a dangerous world. It is calle@hcurrent programming. The moment you use more
than one process to write an application, you have to think about race conditions and try to avoid them as much as
you can. The nameoncurrentis used because you do not know if all your processes execute really in parallel
(when there is more than one processor) or relying on the operating system to multiplex a single processor among
them. In fact, the problems would be the same: Race conditions. Therefore, it is best to think that they execute
concurrently, try to avoid races, and forget about what is really happening underneath.

Programs with race conditions are unpredictable. They should be avoided. Doing so is a subject for a book
or a course by itself. Indeed, there are many books and coursesnaurrent programminghat deal with this
topic. In this text, we will deal with this problem by trying to avoid it, and showing a few mechanisms that can
protect us from races.

4.5. Executing another program

We know how to create a new process. Now it would be interesting to learn how to run progiamusing a

process we have created. This is done withekec system call. This call receives two parameters, a file name

that corresponds to the executable file that we want to execute, and its argument list. The argument list is an array
of strings, with one string per argument.

If we know the argument list in advance (when we write the program), another system callecadtdd is
more convenient. It does the same, but lets you write the arguments directly as the function arguments, without
having to declare and initialize an array. We are going to use this call here.

This is our first example program

@execl.q]
#include <u.h>

#include <libc.h>

void

main(int, char*[])

{
print(“running Is\n");
execl("/bin/ls", "Is", "-I", "lusr/nema", nil);
print("exec failed: %r\n");

}

When run, it produces the following output:

8.execl
running Is
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 18:11 /usr/nemo/bin
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 21:24 /usr/nemollib
d-rwxr-xr-x M 19 nemo nemo 0 Jul 11 21:13 /usr/nemo/tmp
The output is produced by the program foundbim/ls . Clearly, our program did not read a directory nor

print any file information. Furthermore, the output is the same printed by the next command:

Is -l Jusr/nemo

d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 18:11 /usr/nemo/bin
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 21:24 /usr/nemol/lib
d-rwxr-xr-x M 19 nemo nemo 0 Jul 11 21:13 /usr/nemo/tmp

This is what theexecl call did. It loaded the program frouin/ls into our process, and jumped to its main
procedure supplying the argumetfits ”, “-I 7, and“/usr/nemo ”. Remember thaargv[0] is the program

name, by convention. The last parameter to #xecl call wasnil to let it know when to stop taking

-79-

parameters from the parameter list.

There is an important thing that the output for our program does show. Indeed, that naed®ow. The
print we wrote after callingexecl is missing from the output! This makes sense if you think twice. Because
execl loads another program (e.g., that/mn/ls) into our process, our code is gone.dkecl works, the
process no longer has our program. It has thdsofinstead. Also, our process no longer has our data, nor our
stack. Initial data and stack ftg is there instead. What a personality change!

Now consider the same program but replacing the cadkix| with this one:
execl("ls", "-I", "fusr/nemo”, nil);

This is the output now when the program is run:

. 8.exec!
running Is
exec failed: 'Is’ file does not exist

This time, both calls t@rint execute! Becausexecl failed to do its work, it did not load any program into

our process. Our mind is still here, and the second printed message shows up. \Wkgalidfail? We forgot to

supply the file name as the first parameter. Therefexecl| tried to access the fildls to load a program from

it. Because such file did not exist, the system call could do nothing else but to return an error. What value returns
execl when it fails? It does not matter. If it returns, it must be an error.

Now replace the call with the next one. What would happen?

execl("/bin/ls", "-I", "fusr/nemao", nil);

This is what happens:

8.execl
running Is
/usr/nemo/bin
/usr/nemol/lib
/usr/nemo/tmp

Clearlyls did run in our process. Its output is there and our second print is not. However, where is the long list-
ing we requested? Nowhere. Fg; argv[0] was-l andargv[l] was/usr/nemo . We executeds
/usr/nemo . Even worse, we tolts that its name wad .

Now that we have masterexkecl , let's try doing one more thing. If we replace the call with this other
one, what happens?

execl("/bin/ls", "Is", "-I", "$home", nil);
The answer is obvious only when you think which program takes care of understdfilimge”. It is the shell,

and notls . The shell replace$home with its value,/Jusr/nemo in this case. It seems natural now that this is
he output for the program:

8.execl
running Is
Is: $home: '$home’ file does not exist
What we executed was the equivalent of the shell command line
, Is -1 '$home’

which we know well now. Should we want to run the program$bome, we must take care of the environment
variable by ourselves:

-80 -

#include <u.h>
#include <libc.h>

void
main(int, char*[])

char* home;

print("running Is\n");

home = getenv("home");
execl("/bin/ls", "Is", "-I", home, nil);
print("exec failed: %r\n");

4.6. Using both calls

Most of the times you will not cakéxec using the process that initially runs your program. Your program would

be gone. You combine boflork andexec to start a new process and run a program on it, as saw first in this
chapter. We are going to implement a function called , which receives a command including its arguments

and runs it at a separate process. This is useful whenever you want to start an external program from your own
one.

The header for the function will be:
int run(char* file, char* argv[]);

and its parameters have the same meaning that thaseeof: The file to execute and the argument vector. This is
the code.

int
run(char* cmd, char* argvl[])
{
switch(fork()){
case -1:
return -1;
case 0: /I child
exec(cmd, argv);
sysfatal("exec: %r");
default: /l parent
return O;
}
}

The function creates a child process, unlesk fails, in which case it reports the error by returniklg. The

parent process returns zero to indicate that it could fork. The child eadls to run the new program. Should it

fail, there is nothing we could do but to terminate the execution of this process reporting the error. Note that the
child process shouldeverreturn from the function. When a program calis1 , only one flow of control per-

forms the call, and you expect only one flow of control coming out and returning from it.

This function has one problem. The command file might not exist, or lack execution permission, but the
program callingun would never know. This can be a temporary fix, until we learn more in the next section:

-81 -

int
run(char* cmd, char* argv][])
{
if (access(cmd, AEXEC) < 0)
return -1;
switch(fork()){
case -1:
return -1,
case 0: /I child
exec(cmd, argv);
sysfatal("exec: %r");
default:
return O;
}
}

Before creating the child, we try to be sure that the file for the command has access for executingdcdsse
system call checks this when given thEXECflag.

After calling access , and before doing thexec , things could change. So, there is a potential race condi-
tion here. It could be thadccess thinks that the command can be executed, and then something changes, and
exec fails! What is really needed is a way to let the child process tell the parent about what happen. The parent
is only interested in knowing if the child could actually perform its work, or not.

4.7. Waiting for children

Did you notice that the shell awaits until one command terminates before prompting for the next? How can it
know that the process executing the command has completed its execution? Also, if you create a process for doing
something, how can you know if it could do its job?

When a process dies, it always dies by a calexits (remember that there is one after returning from
main). The string the process giveséaits s its exit status. This was not new. The new point is that the par-
ent may wait until a child dies and obtain its exit status. The function used to do théstis:

;. Sig wait

Waitmsg* wait(void)

whereWaitmsg is defined like follows.

typedef

struct Waitmsg

{
int pid; /* of loved one */
ulong time[3]; /* of loved one & */
char *msg; /¥ descendants */

} Waitmsg;

A call towait blocks until one child dies. At that point, it returns a wait message that contains information about
the child, including its pid, its status string, and the time it took for the child to execute. If one child did already
die, there is no need to wait and this call returns immediately. If there is no children to wait for, the function
returns nil.

Now we can really fix the problem of our last program.

-82 -

int
run(char* cmd, char* argv[])
{
Waitmsg* m;
int ret;
switch(fork()){
case -1:
return -1,
case 0: /I child
exec(cmd, argv);
sysfatal("exec: %r");
default:
m = wait();
if (m->msg[0] == 0)
ret =0;
else {
werrstr(m->msg);
ret =-1;
free(m);
return ret;
}
}

After calling fork , the parent goes through the default case and walls . If by this time the child did com-
plete its execution by callingxits , wait returns immediatelyWaitmsg with information about the child. If
the child is still runningwait blocks until the child terminates. The data structure returneddiy is allocated
usingmalloc , and the caller ofvait is responsible for releasing this memory.

Another detail is that the routine updates the process error string in the parent process when the child fails.
That is where the caller program expects to find out the diagnostic for a failed (system) call.

In this case we know that there is at least one child,w&ai cannot return nil. The convention in Plan 9 is
that an empty string in the exit message meanerything oK. That is the information returned byn . The
field min theWaitmsg contains a copy of the child’s exit message.

This code still has flaws. The program that callsm might have created another child before calling our
function. In this case, it is not sure thahit returns information about the child it created. This is a better ver-
sion of the same function.

int

run(char* cmd, char* argv|[])

{

Waitmsg* m;
int ret;
int pid;

pid = fork();

switch(pid){

case -1:
return -1;

case O: /I child
exec(cmd, argv);
sysfatal("exec: %r");

-83-

default:
while(m = wait()){
if (m->pid == pid){
if (m->msg[0] == 0)
ret=0;
else {
werrstr(m->msg);
ret = -1,
free(m);
return ret;
free(m);
}
}

}

The routine, when executed by the parent process, makes sure that the message comes from the right (death) child.
Its manual page should now include a warning stating clearly that this routine waits for any child until the one it
creates is waited for. Callers must know this. Otherwise, what would happen to programs like this one?

if (fork() == 0){
... do something in this child ...

}else {
run(cmd, args);
m= wait(); Il wait for our child
f.rée(m);

}

Thewait in this code seems to be for the child created byftik . However, the call toaun would probably
wait for the 2 children, andvait is likely to return nil!

When a program is not interested in the exit message, it cawaiggid instead ofwait . This function
returns just the pid of the death child. Both functions are implemented using the real systeawaill,. But
that does not really matter.

Although the shell waits by default until the process running a command completes, before prompting for
another line, it can be convinced not to wait. Any command line with a final ampersand is not waited for. Try this

; Sleep 3 ...no prompt for 3 seconds.
and this
; Sleep 3 & ...and we get a new prompt right away.

This is used when we want to execute a commiarttie background, i.e., one that does not read from our termi-
nal and does not make the shell wait for it. We can start a command and forget it is still there. The shell puts into
$apid the pid for the last process started in the background, to let you know its pid for things like killing it.

Any output from the command will still go to the console, and may disturb us. However, the shell arranges
for the command to have its standard input coming ffdev/null , afile that always seems to be empty when
read.

This can be double checked. Tread command reads a single line of text from its input, and then writes it
to its standard output.

-84 -

; read
hello you type this...

hello ...and it writes this.

’

Look what happens here:
; read &

The program did not print anything. Because it could not read anything from its input.

Some programs may want to execute in the background, without making the shell wait for them until termi-
nated. For example, a program that opens a new window in the window system should avoid blocking the shell
until the new window is closed. You want a new window, but you still want your shell.

This effect can be achieved without usi&gn the command line. The only thing needed is to perform the
actual work in a child process, and allow the parent process to die. Because the shell waits for the parent process
(its child), it will prompt for a new command immediately after this process dies. The first program of this chapter
is an example (even though it makes not sense to do this just 1e run

4.8. Interpreted programs

An executable is a file that has the execute permission set. If it is a binary file for the architecture we are running
on, it is understandable what happens. If it is a binary for another architecture, the kernel will complain. This was
executed using an Intel-based PC:

;. 5cls.c
. 5//s.5
. /b.out
/5.out: exec header invalid

The header for the binary file has a constant, weird, number in it. It is placed there by the loader and checked by
the kernel, which is doing its best to be sure that the binary corresponds to the architecture executing it.

But there is another type of executable files. Interpreted programs. For Plan 9, an interpreted program is any
file starting with a text line that has a format similar to

#!/bin/rc

It must start with#! , followed by the command that interprets the file. In the example above, the program inter-
preting the file igbin/rc , i.e., the standard Plan 9 shell. You know what the shell does. It reads lines, interprets
them, and executes commands as a result. For the shell, it does not matter if commands come from the console or
from a file. Both things are files actually!

This is an example of a program interpreted by the shell, also knowslallsscript. We can try it by stor-
ing the text in a file nametello and executing it:

. cat hello
#!/bin/rc

echo hello there!

. chmod +x hello
. hello

hello there!

When Plan 9 tries to execute a file, and it finds that the two initial charactert arié executes the interpreter as

the new binary program for the process, aadthe file whose name was givenéxec . The argument list given

to exec is altered a little bit by the kernel to include the script file name as an argument. As a result, executing
hello is actually equivalent to doing this

rc hello

To say it explicitly, a shell script is always executed by a new shell. Commands in the script are read by the child

-85 -

shell, and not by the original one. Look at this

; cat cdtmp

#!/bin/rc

cd /tmp

;. pwd

/usr/nemo
chmod +x cdtmp
cdtmp

; pwd

/usr/nemo

Is Plan 9 disobeying? Of course not. We executétinp . But commands in the script armt executed by the

shell we are using. A new shell was started to read and execute the commands in the file. That shell changed its
working directory to/tmp , and then died. The parent process (the shell we are using) remains unaffected. This
may confirm what we said

;. cat cdtmp
#l/bin/rc

cd /tmp
pwd

; pwd
/usr/nemo
;o cadtmp
tmp
;o pwd
/usr/nemo

This mechanism works for any program, and not just for the shell. For exahualeis a floating point calculator
language. It can be used to evaluate arbitrary floating point calculations. When given a filehoaniaterprets

the expressions in the file and prints any result. Now we can make an interpreted program that lets you know the
output of 2+2:

,ocat2+2

#1/bin/hoc

2+2

. chmod +x 2+2
2+2

4

Amazing!
Because the shell can be used to write programs, it is a programming language. It includes even a way to
write comments. When the shell finds#acharacter, it ignores it and the rest of the line. That is why the special

format for the first line of interpreted programs in Plan 9 starts with that character! When the shell interprets the
script, it reads the first line as well. However, that line is a comment and, therefore, ignored.

Scripts have arguments, as any other executable program has. The shell interpreting the script stores the
argument list in the environment variable nanfédl This isecho usingecho:

mcechor
#!/bin/rc
echo $*

And this is what it does

. rcecho hello world
hello world

As an additional convenience, within a shell scri$@ is equivalent toargv[0] in a C program,$1l to
argv[l] ,andsoon.

- 86 -

Problems

1

w

Trace (by hand) the execution of this program. Double check by executing it in the machine.

#include <u.h>
#include <libc.h>

void
main(int, char*[])

fork();
fork();
print("hi\n");
}
Compile and execute the first program shown in this chapter. Explain the output.
Fix the program from the previous problem usimgit(2).

Implement your own version of theme(1) tool. This program runs a single command and reports the time
the command took to execute (elapsed time, time spent executing user code, and time spent executing kernel
code).

Implement a function
char* system(char* cmd);

That receives a command line as an argument and must execute it in a child process like the Plan 9 shell
would do. Think of a reasonable return value for the function.

Hint: Which program did we say that knows how to do this type of work?

Write a script that interprets another script, for example, by usingCan you specify that a program inter-
preter is also an interpreted file? Explain.

How could you overcome the limitation expossed in the previous problem?

5 — Talking Processes

5.1. Input/Output redirection

Most commands we have executed so far write their output to the console, because their standard output file
descriptor is usually leading to the console.

In some cases, it may be usefulredirect the output for a command to store the data produced in a file.
For example, to record the date for an important moment, we can exdaigteand store its output in a file, for
posterity. The shell knows how to do this:

date > rememberthis

3

This command line means: Execute the commdat as usual, but send its output tememberthis . The
obedient Plan 9 shell makes the arrangements to get the output for the command sent to file, and not to the con-
sole. As aresultjate did now write anything in the console. But it did write. Its output is here instead.

. cat rememberthis
Thu Jul 13 12:10:38 MDT 2006

This can be done to any command, as you may expect. When the shell findinaa command line, it takes the
next word as the name of a file where to send the output for the command. This is a poor's man editor. We use
cat to read what we write in the terminal, and write it into a file.

; cat >/tmp/note
must leave at 8
control-d

; cat /tmp/note
must leave at 8

The “>" character is an operator, and has a special meaning. To use it just as a character, it must be quoted. We
already knew, but just as a reminder:

;. echo >’ > file

; catfile

>

Another example. If our machine seems to be heavily loaded, we may want to conserve the list of running pro-
cesses, to inspect it later. That is simple:

. ps > processlist

Now that we have the list of processes stored in a file, we can take our time to inspect what is happening to the
machine. For example, we may us&t to print the list. It reads the file and prints all the bytes read to the stan-
dard output.

cat processlist
nemo 1 0:00 0:00 2308K Await bns
nemo 2 5:03 0:00 OK Wakeme genrand
nemo 3 0:00 0:00 0K Wakeme alarm
nemo 4 0:00 0:00 OK Wakeme rxmit

... other lines omitted ...

We can count how many processes there were in the system by the time we stored the list. To do so, we can count
the lines in the fileprocesslist , because we know there is one line in that file per process. The progcam
(word count) counts lines, words, and characters in a file, and prints what it finds.

- 88 -

wc processlist
147 1029 8795 processlist

’

The file processlist has 147 lines, 1929 words, and 8795 characters in it. This means that we had 147 pro-
cesses in the machine at that time. Because we are only interested in the number of lines, we might have used the
option-l towc, as said inw¢(1), to ask just for the number of lines:

. wc -l processlist
147 processlist

As we said before, most commands that accept a file name as an argument, work with their standard input when
no file name is given. Anavc is not an exception. For example,

Towe
when | see it, | believe it
control-d

1 7 28

counts the lines, words, and characters that we type until pressimgtil-d
The shell is able to redirect the standard input for a command, and not just its output. The syntax is similar

gl

to a redirection for output, but using” instead of*>". To remember, imagine the bytes entering through the
wide part of the symbol, going out through the little hole in the other end. We can now do this

. cat < rememberthis
Thu Jul 13 12:10:38 MDT 2006

and it would have the same effect that doing this

. cat rememberthis
Thu Jul 13 12:10:38 MDT 2006

Both commands produce the same output, but they are very different. In the first case, the shell makes the arrange-
ments so that the standard input @t comes fromrememberthisand not from the console. Theat program

has no arguments (other thamgv[0]) and therefore starts reading from its standard input. it does not

even know the name of the file it is reading! In the second case, the shell is not doing anything to the standard
input forcat . The program itself has to open the file, and read from it.

For those rare cases when there is a command that requires a file name as its input, and you still want to run
the command to work on its standard input, Plan 9 provides files ndféd , /fd/1 , etc. These are not real
files, but other interface to use your file descriptors. For example, this is another way of rwanintgp copy its
standard input:

, cat/fd/o
...and cat reads what you type.
and this is achieves the same effect:
cp /fd/0 /fd/1
...and cp copies what you type back to the console

In the last chapter, we did see that a command line executed in the background, i.e., terminatéd, Wsthot
allowed to read from the console. What happens is that the shell redirects the command’s standard input to
/dev/inull , the file that seems to be always empty. You can achieve a similar effect doing this.

. cat </dev/null

Therefore, the input redirection here is redundant:

-89 -

cat </dev/null &

3

How can the shell redirect the standard input/output for a command? Think about it. The poagraseads from
file descriptor 0, when given no arguments. That is the convention for standard input. For catpwtyites at
file descriptor 1. If the shell manages to get the file descriptor Tébr open for writing intorememberthis
the bytes written by cat will go intoememberthis . And of coursecat would know nothing about where
does its standard output go. They are written into an open file descriptor that must lead to some file. Also, if the
shell manages to get the file descriptor O fat open for reading fromidev/null , cat would be reading from
/dev/null
Input/output redirection must be done in the process that is going to execute the command. Otherwise, the
shell would loose its own standard input or output. It must be done before doimgeaefor the new command.
It would not make sense to do it after, because there would be no I/O redirection, and becausgetchamorks,
your program is gone!
Consider this program

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

switch(fork()){
case -1:
sysfatal(“fork failed");
case 0:
close(0); // WRONG!
open("/NOTICE", OREAD);
execl(“/bin/cat", "cat", nil);
sysfatal("exec: %r");
default:
waitpid();
}
exits(nil);

}

and its output.

; B.redir
Copyright © 2002 Lucent Technologies Inc.
All Rights Reserved

We supplied no argument wat in the call toexecl . Thereforecat was reading from standard input. How-
ever, because of the two previous calls, file descriptor O was open tdM&HOICE. The prograncat reads
from there, and writes a copy to its output.

This is a real kludge. We doot know thatopen is going to return O as the newly open file descriptor for
INOTICE. Atthe very least, the program should check that this is the case, and abort its execution otherwise:

fd = open("/NOTICE", OREAD);
assert(fd == 0);

At least, iffd is not zeroassert receivedalse(i.e., 0) as a parameter and prints the file and line number before
callingabort .

The system caltlup receives a file descriptor and duplicates it into another. This is what we need. The
code

-90 -

fd = open("/NOTICE", OREAD);
dup(fd, 0);
close(fd);

opens/NOTICE for reading, therduplicatesthe descriptor just open into file descriptor 0. After the call, file
descriptor 0 leads to the same plddewas leading to. It refers to the same file and shares the same offset. This is
shown in figure 5.1, which assumes tlicit was 3 (As you can see, both descriptors refer now to the same Chan).
At this point, the descriptor whose number isfth is no longer necessary, and can be closed. The program in
cat is only going to read fron@. It does not even know that we have other file descriptors open.

File descriptor
table

File descriptor
table

———=[dev/cons ORDWR
| = offset: 3245

dev/cons ORDWR
offset: 3245

n INOTICE OREAD n /NOTICE OREAD

offset: 0 offset: 0

Beforedup(3, 0) After dup(3, 0)

Figure 5.1: File descriptors before and after duplicating descriptor 3 into descriptor O.

This is the correct implementation for the program shown before. Its output remains the same, but the previ-
ous program could fail (Note that in this section we are not checking for errors, to keep the programs’ purposes
clearer to see).

void
main(int, char*[])

int fd;
switch(fork()){
case -1:
sysfatal("fork failed");
case 0:
fd = open("/NOTICE", OREAD);
dup(fd, 0);
close(fd);
execl("/bin/cat", "cat", nil);
sysfatal("exec: %r");
default:
waitpid();
exits(nil);

}

There are some pitfalls that you are likely to experience by accident in the future. One of them is redirecting stan-
dard input to a file descriptor open for writing. That is a violation of the convention that file descriptor O is open
for reading. For example, this code makes such mistake:

fd = create("outfile", OWRITE, 0664); // WRONG!
dup(fd, 0);
close(fd);

-91 -

Using this code in the previous program po& in trouble. Awrite call for a descriptor open just for reading
is never going to work:

8.iredir
cat: error reading <stdin>: inappropriate use of fd

’

Output redirections made by the shell ugeate to open the output file, because most of the times the file
would not exist. When the file exists, it is truncated by the call and nothing bad happens:

fd = create("outfile", OWRITE, 0664);
dup(fd, 1);
close(fd);

A common mistake is redirecting both input and output to the same file in a command line, like we show here:

cat <processlist >processlist

3

When the shell redirects the outpateate truncates the file! There is nothing there frat to read, and your
data is gone. If you ever want to do a similar thing, it must be done in two steps

; cat <processlist >/tmp/temp
;. cp /tmp/temp processlist
;. rm/tmp/temp

5.2. Conventions

Why does standard error exist? Now you can know. Consider what happens when we redirect the output for a pro-
gram and it has a problem:

Ic /usr/nemos >/tmp/list
Is: lusr/nemos: 'fusr/nemos’ file does not exist
;cat /tmp/list

Clearly, the diagnostic printed bg is not the output data we expect. If the program had written this message to

its standard output, the diagnostic message would be lost between the data. Two bad things would happen: We
would be unaware of the failure of the command, and the command output would be mixed with weird diagnostic
messages that might be a problem if another program has to process such output.

In the beginning, God created the Heaven and the Earth [...], and God said, Let there be Light, and there
was Light. Yes, you are still reading the same operating systems book. This citation seemed appropriate because
of the question, How did my process get its standard input, output, and error? and, How can it be that the three of
them go to/dev/cons ?

The answer is simple. Child processeiserit a copy of the parent’s file descriptors. In the beginning, Plan 9
created the first process that executes in the system. This process had no file descriptor open, initially. At that
point, this code was executed:

open(“/dev/cons", OREAD);
open("/dev/cons", OWRITE);
open("/dev/cons", OWRITE);

Later, all the descendents had their descriptors 0, 1, and 2 open and referideg/tmons . This code would
do the same.

open(“/dev/cons", OREAD);
open(“/dev/cons”, OWRITE);
dup(1, 2);

-92 -

5.3. Other redirections

Output can be redirected to a file appending to its contents. In this case, the shell seeks to the end of the file used
for output before executing the command. To redirect output appendin{prsastead of usé>”.

;. echo hello >/tmp/note

; echo there >>/tmp/note

;. echo and there >>/tmp/note
; cat /tmp/note

hello

there

and there

;. echo again >/tmp/note
; cat /tmp/note

again

The code executed by the shell to redirect the output appending is similar to this one,

fd = open("outfile", OWRITE);
if (fd < 0)
fd = create("outfile", OWRITE, 0664);
seek(fd, 0, 2);
dup(fd, 1);
close(fd);

which creates the output file only when it does not exist. If the program asade |, it would truncate the file
to a zero-length. If it used jugipen, the output redirection would not work when file does not exist. Also, the
call toseek is utterly important, to actually append to the file.

File descriptors other than 0 and 1 can be redirected from the shell. You must write the descriptor number
between square brackets after the operator. For example, this discards any error message from the command by
sending its standard error tdev/null

v e *.c >[2] /dev/inull
open.c seek.c

This file is another invention of the system, like most other filegdev . When you write into it, it seems that
the write was done. However, the system did not write anything anywhere. That is why this file is used to throw
away data sent to a file.

The shell can do more things regarding I/O redirection. ‘&’ operator redirects both standard input and
output to the file whose name follows. However, it opens the file just once for both reading and writing. For
example, this leavefdle empty:

;. echo hola>file
. cat <file >file

But this does not:

. echo hola >file
cat <> file
hola

3

More useful is being able to redirect one file descriptor to another one. Errors are to be written to standard error,
butecho writes to standard output. To report an error from a shell script, this can be done

;. echo something bad happen >[1=2]

which is equivalent to dup(1,2) in a C program.

-903 -

Redirections are applied left to right, and these two commands do different things:

. Is /blah >/dev/null >[2=1]
. Is /blah >[2=1] >/dev/null
Is: /blah: '/blah’ file does not exist

’

The first one redirects its output fdev/null , which throws away all the output, and then sends its standard
error to the same place. Throwing it away as well. The second one send its standard error to where standard out-
put is going (the console), and then throws away the output by sendingdigwnull

5.4. Pipes

There is a whole plethora of programs in Plan 9 that read some data, perform some operation on it, and write some
output. We already saw some. Many tasks can be achieved by combining these programs, without having to write
an entire new program in C or other language.

For example, this book is typeset usimgff(1), and the input text is kept at files namehil.ms , ch2.ms ,
and so on, each one with the text for one chapter. A rough estimate of the book size would be to count the num-
ber of words for all the files containing troff input for chapters. We can use a program to count words. @ption
for wc does just that:

. wc -wch*ms
12189 chl.ms
9252 ch2.ms
8153 ch3.ms
6470 ch4.ms
3163 ch5.ms
61 ch6.ms
592 chXX.ms
39880 total

This gives a good break-down of the number of words in each file, and also of the total (as of today, when we are
writing this). However, to obtain just the total we can give a single file/to

;. cat ch*.ms >/tmp/all. ms
. we -w /tmp/all. ms
39880 /tmp/all.ms

If we suspect that we use the wdiitt too many times in the book, and what to check that out, we can count the
number of lines that contain that word as an estimate. The progrem writes to its output only those lines that
contain a given word. We can run

;. grep file </tmp/all. ms >/tmp/lineswithfile

to generate a filineswithfile that contains only the lines that mentifile , and then use/c on that file
we -w /tmp/lineswithfile
7355 /tmpl/lineswithfile
This is inconvenient. We have to type a lot, and require temporary files just to use the output of one program as
the input for another. There is a better way:

; catch*ms [wec -w
39880

executes botltat andwc. The standard output farat is conveyed by thé| ” into the standard input fowc.
We get the output we wanted in a simple way. This is how we count just the lines using the word file:

; catch*ms [grep file | wc -1
7355

-94 -

Here, the output ofat was conveyed tgrep , whose output was conveyedwa. A small command line per-
formed a quite complex task. By the way, becagsep accepts as arguments the names for its input files, a
more compact command could be used:

grep file ch*ms [wc -/
7355

’

The conveyerrepresented by the vertical bar is callegipe . Its function is the same. Think of input as bytes
flowing into a command, for processing, and output as bytes flowing out the command. If you have a pipe, you
can plumb one output to one input. But yowstuse a pipe. Otherwise, bytes would pour on the floor!

Before, we have useps to lists processes. Usually, there are many lines printed by the command, but we
can be interested in a particular one. There is no need to scroll down the terminal and search through many lines
just to find the information for a broken process:

. ps [grep Broken
nemo 1633 0:00 0:00 24K Broken 8.out

The output ofps is sent into the pipe. It flows through it and becomes the inpugfep , which writes just those
lines that contain the strinBroken .

To get rid of this broken process, we can exedutgke . This progranmprints a command to kill the bro-
ken processes, but does not kill them itself (killing is too dangeroubasice does not want to take responsibil-
ity for your actions):

;. broke

echo kill>/proc/1633/ctl # 8.out

’

But to executahis command, we must use it as input for the shell. Now we can.

. broke [rc
. ps | grep Broken

Figure 5.2 shows what happens when you exebutée|rc The file descriptor 1 fobroke gets sent to the

input of the pipe. The output from the pipe is used as source for file descriptarcO Trhereforeyc reads from

its standard input whatroke writes on its output. In the figure, processes are represented by circles. Arrows
going out from circles are file descriptors open for writing. The descriptor number is the value or variable printed
in the arrow. Arrows pointing into circles are file descriptors open for reading. Of course, the process represented
by the circle is the one who reads. Pipes and files do not read, they are not alive!

pipe

Figure 5.2: Using a pipe to connect the outputbobke to the input ofc .

The pipe is an artifact provided by Plan 9 to let you interconnect processes. It looks like two files connected
to each other. What you write into one of them, is what will be read from the the other. That is why in the figure,
the input for one process goes into one end of the pipe, and the output for the other process may gthtr the
end of the pipe.

To create a pipe in a C program, you can usepipe system call. It returnsvo descriptors, one for each
end of the pipe. Both descriptors are stored at the integer array passed as a parameter to the function.

- 95 -
int fd[2];

pipe(fd);
/ fd[0] has the fd for one end
/ fd[1] has the fd for the other.

This program is trivial, but it helps in understanding pipes. It writes some text to one end of the pipe, and reads it
back from the other end. To see the outcome, it prints what it did read to its standard output.

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

int fd[2];
char buf[128];
int nr;

if (pipe(fd) < 0)
sysfatal("can't create a pipe: %r");
write(fd[1], "Hello\n", 7);
nr = read(fd[0], buf, sizeof(buf));
write(1, buf, nr);
exits(nil);

}
This is the output

8.pipe
Hello!

’

Because standard output is file descriptor 1, and standard input is file descriptor 0, the tradition is to read from
fd[0] and write intofd[1] , as the program does. Pipes are bi-directional in Plan 9, and doing it the other way
around works as well. It is said that Plan 9 pipesfalieduplex.

Let's try now something slightly different. If we replace the single write in the program with two ones, like

write(fd[1], "Hello"\n", 7);
write(fd[1], "there\n", 6);

this is what the program prints now.

8.pipe
Hello!

3

the same! Plan 9 pipes presemvdte boundaries (known also asnessage delimiteys That is to say that for
each read from a pipe, you will get data from a single write made to the pipe. This is very convenient when you
use the pipe to speak a dialog between two programs, because different messages in the speech do not get mixed
But beware, UNIX does not do the same. This is the output from the same program in a UNIX system:

$ pipe

Hello!

there
$

In Plan 9, we need a second read to obtain the data sent through the pipe by the second write.

The pipe has some buffering (usually, a few Kbytes), and that is where the bytes written by the program
were kept until they were read from the pipe. Plan 9 takes care of those cases when data is written to the pipe fas-
ter than it is read from the pipe. If the buffer in the pipe gets full (the pipe is full of bytes), Plan 9 will make the

-96 -

writer process wait until some data is read and there is room in the pipe for more bytes. The same happens when
data is read faster than written. If the pipe is empty, a read operation on it will wait until there is something to
read.

You can see this. This program fills a pipe. It keeps on writing into the pipe until Plan 9 puts the process in
the blocked state (because the pipe is full).
fil.c o

#include <u.h>

#include <libc.h>

void
main(int, char*[])

{

int fd[2];
char buf[1024];
int nw;

if (pipe(fd) < 0)
sysfatal("can't create a pipe: %r");
for(;;{
nw = write(fd[0], buf, sizeof(buf));
print("wrote %d bytes\n", nw);

}

exits(nil);

}

This is the output. The pipe in my system can hold up to 30 Kbytes.

. 8.1l

wrote 1024 bytes

wrote 1024 bytes

wrote 1024 bytes

... 29 lines including these two ones...
wrote 1024 bytes

... and it blocks forever

And this is whatps says for the process:

. ps[grep 8.fill
nemo 2473 0:00 0:00 24K Pwrite 8.fill

It is trying to write, but will never do.

In the shell examples shown above, it is clear that the process reading from the pipe gets an end of file (i.e.,
a read of 0 bytes) after all data has gone through the pipe. Otherwise, the commands on the right of a pipe would
never terminate. This is the rule: When no process can write to one end of the pipe, and there is nothing inside the
pipe, reading from the other end yields O bytes. Note that when the pipe is empty, but a process can write to one
end, reading from the other end would block.

This is easy to check using our single-process program. If we do this

close(fd[1]);
nr = read(fd[0], buf, sizeof(buf));

the value ofnr becomes zero, angad does not block. However, removing thkse line makes the program
block forever.

Writing to a pipe when no one is going to read what we write is a nonsense. Plan 9 kills any process doing
such thing. For example executing this program

-97-

fhrokenpipe.c]
#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

int fd[2];
char buf[128];
int nr;

if (pipe(fd) < 0)
sysfatal("can't create a pipe: %r");
close(fd[0]);
write(fd[1], "Hello\n", 7);
print(“could write\n");
exits(nil);

}

yields

;. 8.brokenpipe
;. echo $status
8.0ut 2861: sys: write on closed pipe pc=0x00002b43

5.5. Using pipes

One useful thing would be to be able to send from a C program an arbitrary string as the standard input for a com-
mand. This can be used for many things. For examplemt@ié program is used to send electronic mail from the
command line. The body of the message is read from standard input, and the subject and destination address can
be supplied in the command line. This is an example using the shell.

;. mail -s 'do you want a coffee?’ mero@Isub.org

Hi,

If you want a coffee, let’s meet down at 5pm.
see u.

control-d

To do something similar from a C program, we must create a child process to erediliteon it. Besides, we
need a pipe to redirect to it the standard inputrf@il and write what we want from the other end of the pipe.

This seems a general tool. We are likely to want to execute many different commands in this way. There-
fore, we try to write a function as general as possible for doing this job. It accepts a string containing a shell com-
mand line as a parameter, and executes it in a child process. It returns a file descriptor to write to a pipe that leads
to the standard input of this process.

- 08 -

[pipeto.c
#include <u.h>

#include <libc.h>
int
pipeto(char* cmd)

{
int fd[2];
pipe(fd);
switch(fork()){
case -1:
return -1;
case 0:
close(fd[1]);
dup(fd[0], 0);
close(fd[0]);
execl("/bin/rc", "rc", "-c", cmd, nil);
sysfatal("execl");
default:
close(fd[0]);
return fd[1];
}
}
void
main(int, char*[])
{
int fd, i;
char* msgs[] = {
"warning: the world is over\n",
"spam: earn money real fast'\n",
"warning: it was not true\n" };
fd = pipeto("grep warning");
if (fd < 0)
sysfatal("pipeto: %r");
for (i = 0; i < nelem(msgs); i++)
write(fd, msgsli], strlen(msgsli]));
close(fd);
exits(nil);
}

To see a complete example, where this function is usedimtia function usegipeto to send several mes-
sages to the input of a process runngmgp warning . Messages are sent by writing the the file descriptor
returned frompipeto . When nothing more has to be sent, the file descriptor is closed. The child process will
receive an end-of-file indication as soon as it consumes what may still be going through the pipe. This is the out-
put for the program.

;. 8.pipeto
; warning: the world is over
warning: it was not true

Because the parent process finishes before the child is still processing the input that comes from the pipe, the shell
prompt gets printed almost immediately. If this is a problem, the parent must wait for theaffeitdvriting all

the data to the pipe. Otherwise, thaitpid call would block waiting for the child to die, and the child would

block waiting for the end of file indication (because the parent has the pipe open for writing).

Figure 5.3 shows the processes involved, all their descriptors, and the pipe. We use the same conventions
used for the last figure, which we will follow from now on.

-99 -

Parent
Process

Figure 5.3: A process using a pipe to send input to a command.

All the interesting things happen in the functipipeto . It executes the Plan 9 shell, supplying the com-
mand line as the argument for optien , this asksrc to execute the argument as a command, and not to read
commands from standard input.

First, beforecreating the child process, the parent process makes a pipe. It is very important to understand
that the pipanustbe created before we cdtirk . Both processes must share the pipe. If the pipe is created after
forking, in the child process, the parent process does not have the descriptor to write to the pipe. If it is created by
the parent, after callinfprk , the child will not have the descriptor to read from the pipe.

Even if both processes create a pipe, after the child creation, there are two different pipes. Each process can
use only its own pipe, but they cannot talk. It does not matter if the numbers returnegbifpemfor the two
descriptors are the same (or not) for both processes: They are different descriptors because each process made it
own call topipe. Therefore, pipes are created always by a common ancestor of the processes communicating
through the pipe.

Another important detail is that all the descriptors are closed (by all processes) as soon as they are no longer
useful. The child is going to caéixecl , and the new program will read from its standard input. Thus, the child
must close both pipe descriptors after redirecting its standard input to the end for reading from the pipe. The par-
ent process is going to write to the pipe, but it is not going to read. It closes the end for reading from the pipe.
Not doing so risks leaving open the pipe for writing, and in this case the reader process would never get its end of
file indication.

Why does the child redirect its standard input to the pipe and not the parent? We wrote the code for the par-
ent. We know that it ha&l[1] open for writing, and can just use that descriptor for writing. On the other hand,
the child doesot know! After the child executegrep , how can grep possibly know that it should use a file
descriptor other than zero for reading?

The following example is a counterpart to what we made. This function creates a child process that is used
to execute a command. However, this time, we return the output produced by the command. For example, calling

nr = cmdoutput("wc *.c", buf, sizeof buf);

will fill in buf a string taken from whawc *.c prints to its standard output. This is not the best interface for

the task, because we do not know how much the command will print, but it is useful nevertheless. The caller
must take the precaution of supplying a buffer large enough. The number of bytes read is the result from the func-
tion. This is its code:

- 100 -

long
cmdoutput(char* cmd, char*buf, long len)

{
int fd;
long tot;

if (pipe(fd) < 0)

return -1; // failed to create a pipe
switch(fork()){
case -1:
return -1;
case 0:
close(fd[0]);
dup(fd[1], 1);
close(fd[1]);
execl("/bin/rc", "-c", cmd, nil);
sysfatal("exec");
default:

close(fd[1]);
for(tot = 0; len - tot > 1; tot += nr){
nr = read(fd[0], buf+tot, len - tot);

if (nr <=0)
break;
}
close(fd[0]);
waitpid();
buf[tot] = 0; /Il terminate string

return tot;

}

In this function, we wait for the child to complete before returning, but after having read all the data from the
pipe. It is a serious mistake to wait for the child before having read all its output. If the output does not fit into the
pipe, the child will block as soon as the pipe is full. It will be waiting forever, because the parent is not going to
read untilwaitpid completes, and this call is not going to complete until the child dies.

This is called adeadlock One process is waiting for another to do something, and that requires the former
to do another thing, which cannot be done because it is waiting. You know when you have a deadlock because the
processes involveileeze Deadlocks must be avoided. We avoided one here simply by doing the things in a sen-
sible order, and waiting for the child after we have read all its output.

What we have seen is very useful. Many programs do precisely this, or other similar things. The editor
Acme admits commands to be applied to a portion of text selected by the user. For example, using the button-2 in
Acme to run the commanj+ asks Acme to execute the program with the selected text as the input figr
and to replace that text with the output from the command. Of course, Acme uses pipes to send text to the input of
t+ and to read its output. The commatid is a shell script used to indent text by inserting a tab character at the
start of each line.

The shell is also a heavy user of pipes, as you might expect. Rc includes several interesting constructs that
are implemented along the lines of what we saw before.

When Rc finds a command insidg ..}, it executes the command, asdbstitutegshe whole‘{ ..} text
with the output printed by the command. We did something alike in the C program when reading the output for a
command using a pipe. This time, Rc will do it for us, and relieve us from typing something that can be generated
using a program. This is an example.

; date

Fri Jul 21 16:36:37 MDT 2006
;. today="{date}

; echo $today

Fri Jul 21 16:36:50 MDT 2006

Another example, using a command that writes numbers in sequence, follows.

-101 -

seql5

AR WNPERT

echo {seq 1 5}
12345

’

As you can see, the second command was equivalent to this one:
; echo12345

The shell executedeq 1 5, and then did read the text printed by this command through its standard output
(using a pipe). Once all the command output was read, Rc replaced the Yha}e construct with the text just

read. The resulting line was the one executed, instead of the one that we originally typed. Because a newline char-
acter terminates a command, the shell replaced ¥adh the command output with a space. That is why execut-

ing seq directly yields 5 lines of output, but using it with ...} produces just one line of output.

A related expression provided by the shell<g...}. Like before, Rc executes the command within the
brackets, when it finds this construct in a command line. The output of the command is sent through a pipe, and
the whole<{ ...} is replaced by a file name that represents the other end of the pipe (pipes are also files!, as we
will see in a following chapter).

There are several interesting uses<ér...} , one of them is to be able to give a file name for the input file
for a command, but still use as input another command that writes to its standard output.

;. we <{seq 15} /LICENSE
5 5 10 /fd/13 This is the pipe!
261 1887 13006 /LICENSE
266 1892 13016 total

’

But, perhaps, the most amazing use for this construct is to build non-linear pipelines. That is, to use the output of
severalcommands as input for another one. For the latter, the output of the former ones would be just a couple of
file names. An interesting example is comparing the output of two commands. The shell coem@maodmpares

two files, and informs us whether they have the same contents or not.

;. ¢p /LICENSE /tmp/]

;. cmp /LICENSE /tmp/l

; cmp /LICENSE /NOTICE
/LICENSE /NOTICE differ: char 1

Therefore, if you want to execute two commands and compare what they write to their standard output, you can
now usecmp as well.

;. cmp <{seq 1 3} <{echo 1, echo 2, echo 3}
;. cmp <{seq 1 3} <{echo 1 2 3}
/fd/14 /fd/13 differ: char 2

’

You will get used td{ ..} and<{..} after using them in the couple of chapters that discuss programming in Rc.

5.6. Notes and process groups

Pipes are asynchronous communicationmechanism. A process using a pipe must cedld or write to

receive or send data through the pipe, and communication happens only when the process makes these calls.
Sometimes, the world is not so nice and we needsynchronous communicatiormechanism. For example, if

a process gets out of control and you want to stop it, you may want to post a note ‘$aiengipt to the process.

The process is not reading from anywhere to obtain the message you want to send, but you still can send the mes-
sage at any moment. The message will interrupt the normal execution of the process, so this mechanism is to be

-102 -

used with care.

Posting notes can be dangerous, when the process is not paying attention to the note posted it is killed by the
system.

This is our first example, we are going to use the window system to interrupt a processctthéngiven
no arguments, it reads from the console. It will be doing so unless you tgpeteol-dto ask the window to sig-
nal a (fake) end of file. This time, we are not going to do so. Run this command andJ&iess

cat
cat waits reading...
Delete ...until you press delete,
; and cat is gone!

What happen tegat ? Let’'s ask the shell:

; echo $status
cat 735: interrupt

According to the shellcat died because ahterrupt.

When you type characters, the window system reads them from the real console. Depending on which win-
dow has thdocus i.e. on which one did you click last, it sends the characters to the corresponding window. If the
window system reads Beletekey, it understands that you want to interrupt the process in the window that has
the focus, and it posts a note with the texerrupt for all the processes sharing the window. The shell is pay-
ing attention (and ignoring) the note, therefore it remains unaffected. Howeateris not paying attention to it,
and gets killed in action.

Let's do it by hand. We need a victim.
;. Sleep 3600 &

’

And this one gives us one hour to play with it. The process is alive and well:

;. ps/[grep sleep

nemo 1157 0:00 0:00 8K Sleep sleep
; echo $apid

1157

We check that it is our process, looking%dpid . No tricks here. To post a note to a process, the note text is
written to a file in/proc that provides the interface to post notes to it. Remember that this file is just an interface
for the process, and not a real file. For this process, the file woulghtoe/1157/note . To do exactly the
same that the window system is doing, we want to post the na# fwrocesses sharing its window. Writing the
note to/proc/1157/notepg does this:

;. echo interrupt >/proc/1157/notepg
;. ps/grep 1157
Itis gone!
The file is calledhotepg because it refers torocess group Processes belong to groups only for admin-

istrative reasons. For examplegleteshould affect all the processes active in a window. Otherwise, you would
not be able to interrupt a command line with more than one process, like a pipeline.

Usually, there is a process group per window, and it is used to deal with all the programs on the window at
once. When a window is deleted using the mouse, you expect the programs running on it to die. The window sys-
tem posts dangup note when the window is deleted. The note is posted to all the processes in the window, i.e.,
to the process group of the shell running in the window. We can also try this.

;. echo hangup >/proc/$pid/notepg
And the window is gone!

This required having an abstraction, i.e., a mechanism, to be able to group those processes and post a note just for

- 103 -

them. The process group is this abstraction.

By the way, notes are the mechanism used by the system to signal exceptional conditions, like dividing by
zero. Notes posted by the system start \giticide: , and put the process into the broken state, for debugging.

Processes can uagnotify to register a notification handler that listens for notes. The function receives a
note handler as a parameter, and installs the handler if the second parameter is true, or removes the handler other-
wise.

sig atnotify
int atnotify(int (*f)(void*, char*), int in)

The handler is a function that receives a pointer to the process registers as they were when it noted the note. This
is usually ignored. The second parameter is more interesting, it is a string with the text from the note. When the
note is recognized by the handler, it must return true, to indicate that the note was attended. Otherwise, it must
return false. This is required because there can be many handlers installed for a process, e.g., one for each type of
note. When a note is posted, each handler is called until one returns true. If no handler does so, the note is not
attended, and the process is killed.

This program may provide some insight about notes. It registers a handler that prints the note received and
pretends that it was not attended (returning zero).

gnote.c
#include <u.h>

#include <libc.h>

int
handler(void*, char* msg)

{
print("note: %s\n", msg);
return O;

}

void
main(int, char*[])
{
atnotify(handler, 1);
sleep(3600 * 1000); // one hour to play
print("done (%r)\n");
exits(nil);

}

If we run the program, and preBeletewhile it is running, this is what happens:

;. 8.pnote
the program runs until we press Delete. And then, ...
Delete
note: interrupt
; echo $status
8.pnote 1543: interrupt

’

The program is killed, because it did not handle the note. When we présdett the program was executing
whatever code it had to execute. In this case, it was blocked waiting iskdp for time to pass by. The note
caused the system call to be interrupted, and the prguegsedto execute its handler where it printed its mes-
sage. Because no handler recognized the note, the process was killed.

Notes are asynchronous, and this means that the handler for a note may run at any time, when it pleases Plan
9 to instruct your process to stop what it was doing and jump into the note handler. This is similar to the model
used forinterrupts which is quite different from therocessmodel: One single continuous flow of control, easy
to understand.

- 104 -

We are now going to modify the handler to return true, and not zero. This is what the new program does.

8.pnote
the program runs until we press Delete. And then, ...
Delete
note: interrupt
done (interrupted)
echo $status

3

The program was executing tkeep system call, it was blocked waiting for time to pass. After hittibglete a

note was posted. The natural flow of control for the process was interrupted, and it jumped to execute the note
handler. It prints the text for the notiterrupt, and returns true. The note was recognized and Plan 9 is happy
with that. The process is not killed. Instead, it continues where it was. Well, mostly.

The process did not wait for one hour! Because of the note, the system call was interrupted. It returns an
error to report that. But it returns. The program is still running at the same point it was when the note was posted.
We printed the error string reported frateep to see that it isnterrupted

In general, notes are not to be used in your programs. In other systems, they are used to remove temporary
files if a program is interrupted. In Plan 9, there is a better way for doing this. Any file that you open with the
ORCLOSHag, for example,

fd = open("/tmp/tempfile”, ORDWR|ORCLOSE);

is automatically removed by the system when the file descriptor is closed. If your program dies because of a note,
the descriptor is closed as part of the natural dying process. At that point, the file is removed. Using notes it could
be done by installing a note handler like this one

int cleanup(void*, char* msg)

if (strcmp(msg, "interrupt") == 0)
remove("/tmp/tempfile™);
return O;

}

But this is anhorrible idea. Notes can happen at any time, behind your back. You are executing your nice single
flow of control, and there are functions as nasty as the pop-ups in other window systems, that run at unexpected
times and may cause your program to fail.

When are notes posted by Plan 9? The kernel is not a magic program. It can post a note only when it exe-
cutes. Besides, for simplicity, a note is handled from within the process that receives it. A write imtéher
thenotepg file records that the target process(es) has a note posted. Sooner or later, the target process will be
allowed to run (if only to process the pending note), At that point, when returning from the kernel back to the
user’s code, is when the note is processed.

If the process receiving the note was performing a system call that does not block, the system call is allowed
to complete and the note is posted while returning from the call. On the other hand, if the process was performing
a slow system call, and was blocked trying to read, or write, or any other thing, the system call is interrupted, as
we saw before.

5.7. Reading, notes, and alarms

You know how to read from a file. To reatbytes from a file the program must cadlad until all the n bytes

are read, becaugsead may return less bytes than requested. This is so common, that a library fureszism

exists that keeps on calling read until all theoytes have been read. However, This function may return less
bytes than requested, because of a note. Of course this would happen only if the process is attending the note,
because it would be killed otherwise, and wreddn does would not matter at all.

To actually readh bytes even when receiving notes, we can use this alternate function:

- 105 -

long
robustreadn(int fd, char* buf, long n)
{
long nr, tot;
char err[128];

for (tot = 0; tot < n; tot += nr){
nr = read(fd, buf+tot, n-tot);

if (nr ==0)
break;
if (nr <01
rerrstr(err, sizeof(err));
if (strcmp(err, "interrupted”) == 0)
nr = 0; // retry

else
break;

}

return tot;

}

It requires the process to install a handler forititerrupted note, or the process will be killed.

Surprisingly enough, there are times when the problem is notéaak is interrupted, but, on the contrary,
the problem is that it is not interrupted. For example, a process may need to read a message sent from anywhere
else in the network. This is achieved by calliregad on a file that is used toonnecthe process with the one that
is supposed to send it a message. Similar to a pipe, but crossing the network. There is a problem in this case. If the
other (remote) process hangs, because of a bug or any other reason, it may never send its message. The poor pro
cess that is reading will be blocked awaiting, forever, for the message to arrive.

To recover from this circumstance, it is usual to empldyraout. A timeout is an alarm timer used to be
sure that there is a limit in the amount of time that we wait for some operation to complete. In this case, it seems
reasonable to use a timeout of 30 seconds. That is an incredibly long time for a computer, even when considering
the delays involved in crossing the network to send or receive a message.

Plan 9 provides an alarm timer for each process. The timer is started by @d#img , giving as a parame-
ter the number of milliseconds that must pass before the timer expires.

sig alarm
long alarm(unsigned long millisecs)

There isno guarantee that the timer will last for exactly that time. It might take a little bit more if the system is
busy doing any other thing. However, real soon after the specified number of millisecoradarran note will be
posted for the process that did calarm . And you know what happens, when the note is posted, any system
call that kept the process awaiting (e.gad) will be interrupted. The following program reads a line from the
terminal, and prints it to the standard output. However, it will wait at most 30 seconds for a line to be typed.

- 106 -

#include <u.h>
#include <libc.h>

int
handler(void*, char* msg)
{
if (Istrcmp(msg, "alarm™)){
fprint(2, "timed out\n");
return 1;
}

return O;

}

void

main(int, char*[])

{
char buf[1024];
long nr;

atnotify(handler, 1);
print("type something: ");
alarm(30 * 1000); 11 30 secs.
nr = read(0, buf, sizeof buf);
alarm(0);
if (nr >=0)

write(1, buf, nr);
exits(nil);

}

Right before callingead , the program installs an alarm timer of 30 seconds. That much time later, it will post
thealarm note. If we type something armgéad completes before that time, the program calerm(0) to
cancel the timer. Otherwise, the timer expires egatl is interrupted.

; 8.alarm

type something: Hi there
Hi there

. 8.alarm

type something: timed out We did not type anything for 30secs

In general, timers are to be used with caution. They make programs unpredictable. For example, it could happen
that right after we typed our line the timer expires. This could happemwatime, not necessarily while we are
waiting inread , but perhaps when we are in our way to cancel the timer. At least, it is wise to give plenty of
time for a timeout, to make things more predictable, and it is even better not to use it unless it is absolutely neces-
sary.

5.8. The file descriptor bulletin board

Sometimes, processes need to talk through a pipe, but they do not have an appropriate ancestor where to create the
pipe. This happens when, after a process has been created, a newcomer wants to talk to that process.

The program that implements the file systdogsil | is a perfect example. It is started (in the file server
machine) during the boot process. Once started, programs may use files by talking to the file server using the net-
work.

But there is a problem. The file system, $essi(4), has to be able to accept commands from a human oper-
ator, to carry out administration tasks. Hossil , a simple way is to create a pipe and attend one end of the
pipe, reading commands and writing replies (pipes are bi-directional). Any process used by a human at the other
end of the pipe may talk to the file system, to administer it. Here is an example of a conversation between a
human and the file system:

- 107 -

main: fsys
main
main: sync
main sync: wrote 0 blocks
main: who
console
/srv/boot nemo
[srv/fossil nemo
Isrvivfossil nemo
Isrv/fboot nemo

When we wrotesys , fossil replied with the list of file systems. When we typgghc , fossil synchronizedts
changes with disk (any change to a file that was not yet copied to the disk, was copied immediately). When we
typedwho, the file system wrote the list of users using the file system.

How can we reach the pipe used to talkféesil ? The directorysrv is special. It is a file descriptor
bulletin board. A process cgosta file descriptor into this bulletin board by creating a file on it. For example, in
my system/srv/fscons is a file that corresponds to the end of the pipe used to talk to fossil.

The idea is not complex, once you realize that files in Plan 9 are not real files, most of the times. The file
Isrv/fscons is not a file, it looks like, but it is just a file interface for a file descriptor tfegsil has open.
Becausdsrv/fscons lookslike a file, you can open it and gain access to the file descriptor. And you do not
require a common ancestor with fossil!

For example, this, when executed in the file server, &%l to write any pending change to the disk.

;. echo sync >>/srv/fscons

When the shell opensrv/fscons , it is not opening yet another file. It is obtaining a file descriptor that is
similar to the one posted intgrv/fscons by fossil . The result is the same of callimyp to duplicate the
descriptor kept insidésrv/fscons , however, you cannot catlup. You do not have the file descriptor to

duplicate, because it belongs to another process.

This program is an example of how to use this bulletin board. It creates one pipe and reads text from it,
printing a copy to standard output, so we could see what is read. The other end of the pipe is posted at
/srv/lecho , for us to use.

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

int fd[2];

int srvfd;
char buf[128];
int nr;

if (pipe(fd) < 0)
sysfatal("pipe: %r");
srvfd = create("/srv/echo”, OWRITE, 0664);
if (srvfd < 0)
sysfatal("can't create at /srv: %r");

- 108 -

if (fprint(srvfd, "%d", fd[1]) < 0)

sysfatal("can't post file descriptor: %r");
close(fd[1]);
for (X

nr = read(fd[0], buf, sizeof buf);

if (nr <=0)

break;
write(1, buf, nr);

}
print("exiting\n");
exits(nil);

}

Thecreate call for/srv/echo creates a file where the program can post a file descriptor. The way to do the
post is by writing the file descriptor number into the file, and closing it. The created fiknat is just an arti-

fact. What matters is that now there is another way to get to the descridjilin . Because the program does

not use that descriptor itself, it closes it. Note that the pipe emtbislosed at this point. The descriptor kept
inside/srv/echo s also leading to that end of the pipe, which therefore remains open. From now on, the pro-
gram reads from the other end of the pipe to do the echo.

8.srvecho &
. e /srv
boot echo plumb.nemo.264 slashmnt
cs_net fscons slashdevs vol
;. echo hi there! >>/srv/echo
hi there!
ps [grep 8.srvecho

nemo 2553 0:000:00 24K Pread 8.srvecho

If we remove the file/srv/echo , and no process has the file descriptor open for that end of the pipe, our pro-
gram would receive an end of file indication at the other end of the pipe, and terminate.

. rm/srv/echo
exiting

’

Files in/srv are just file descriptors. They only difference is that they are published in a bulletin board for any-
one to see. How is this done? In a simple way, each filédir contains a reference to the Chan of the descrip-
tor posted in it. Figure 5.4 shows the elements involved in the session we have just seen.

5.9. Delivering messages

Presenting every resource as a file may be an inconvenience when programs need to act after some success hap
pens. For example, the progrdates (see figure 5.5) shows a small face image for each email received by the
user, displaying an image that describes the sender for each mail. When a mail fatgss, must show a new

face to alert the user of the new incoming mail. In this case, usually, the program must check out the files of
interest to see if the thing of interest happen. This is cgitating, and the thing of interest is called ament

Polling has the problem of consuming resources each time a poll is made to check out if an interesting event
happen. Most of the times, nothing happens and the poll is a waste. Therefore, it would be very inefficient to be
all the time polling for an event and, as a result, programs that poll usuallglealh between each two polls.

The following two programs wait until the file given as a parameter changes, and then print a message to let us
know. The first one performs a continuous poll for the file, and the second one makes one poll each 5 seconds.

moll.c

- 109 -

Echo

process

File

/srv/echo

File descriptor
table

file: pipe ORDWR
offset: 0

\ file: pipe ORDWR m

offset: 0

Figure 5.4: A file descriptor posted dsrv/echo used to talk to a process through a pipe.
Mon Jul 31 13:28

ol 18 B

mero sareva FSC esoria paurea nemo
13:27 13:27 13:27 13:27 13:27 13:27

Figure 5.5: The progranfaces shows small faces for persons that sent email to us.

#include <u.h>
#include <libc.h>

void

main(int argc, char* argv[])

{

Dir* d;
ulong mtime, nmtime;
if (argc 1= 2){

fprint(2, "usage: %s file\n", argv[0]);
exits("usage");

}
d = dirstat(argv[1]);
if (d == nil)

sysfatal("dirstat: %r");
mtime = d->mtime;
free(d);
do {

d = dirstat(argv[1]);

if (d == nil)

break;
nmtime = d->mtime;

-110 -

free(d);
} while(hmtime == mtime);
print("%s changed\n", argv[1]);
exits(nil);

}

mollb.c
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])

{

Dir* d;
ulong mtime, nmtime;
if (argc = 2){

fprint(2, "usage: %s file\n", argv[0]);
exits("usage");
}
d = dirstat(argv[1]);
if (d == nil)
sysfatal("dirstat: %r");
mtime = d->mtime;
free(d);
do {
sleep(5 * 1000);
d = dirstat(argv[1]);
if (d == nil)
break;
nmtime = d->mtime;
free(d);
} while(hmtime == mtime);
print("%s changed\n”, argv[1]);
exits(nil);

}

It is interesting to see how loaded is the system while executing each progransydthen loadis a parameter

that represents how busy the system is, and it is usually indicative of how much work the system is doing. The
load is measured by determining which percentage of the time the system is running a process and which percent-
age of the time the system is not. In a typical system, most of the time there is just nothing to do. Most processes
will be blocked waiting for something to happen (e.g., insidead waiting for the data to arrive). However,

from time to time, there will be some processes with a high demand of CPU time, like for example, a compiler
trying to compile a program, and the system load will increase because there’s now some process that is often
ready to run, or running.

We can use thetats tool to display the system load. This tool shows a graphic depicting the system load
and other statistics. For example, both figures 5.6 and 5.7 show a window rwtatag . Figure 5.6 shows the
system load for our first experiment regarding polling. It is hard to see in a book, but the graph displayed by
stats is always scrolling from right to left as time goes by. Around the middle of the graph it can be seen how
the load increased sharply, and went to a situation where almost always there was something to do. The system
started to be heavily loaded. This was the result of executing the following.

. 8.poll poll.c
"...and the machine got very busy until we hit Delete
Delete

’

The proces8.poll wasalwayspolling for a change on its file. Therefore, there was always something to do.
Despite being run on a very fast machiB8epoll never ceased to poll. When the system decidedghpll
got enough processor time, and switched to execute any other process, our polling process ceased to poll for a tiny

-111 -

nautilus

SR O b

Figure 5.6: A window runningstats while the intensive polling program increased the load.

fraction of time. Later on, it will be put again in the processor and consume all the time given to it by the system.
When all processes are blocked waiting for something to hagppall s still very likely to be ready to run.

As a result, the system load is at its maximum. Later, we presskateand killed8.poll , and the system load
came back to a more reasonable value.

Note that a high load doewt mean that the system is unresponsive, i.e., that it cannot cope with any more
work to do. It just means that there is always something to do. Of course, given the sufficient amount of things to
do, the system will become unresponsive because no process will be given enough processor time to complete
soon enough. But that does not need to be the case if the load is high.

nautilus

SR O b

Figure 5.7: The system load is not altered if the program sleeps between polls.

Compare what you saw with the load while executing our second version for the polling program, which
callssleep to perform one poll each 5 seconds. The window rungitags while we executed this program is
shown in figure 5.7. This program behaved nicely and did not alter much the system load. Most of the time it was
sleeping waiting for the time for its next poll. As an aside, it is interesting to say that Plan 9 typically exhibits a
much lower system load than both figures show. The system used to capture both images is a derivative of Plan 9,
called Plan B, which uses polling for many things. When there are many processes polling, the load naturally
increases even if the processes sleep between polls.

Thesleep used by programs that poll introduces another problem: delays. If the event does occurs and the
polling program is sleeping, it will not take an appropriate action untilsieep completes. And this is a delay.
If the process waiting for the event produces, as a result, another event, the delay of any other process polling for
the later event is added to the chain.

The consequence of what we have discussed so far is that most operating systems provide an abstraction to
deliver events and to wait for them. The abstraction is usually calleeivant channe] and is used to convey
events from the ones that produce them to the ones that await for them.

An event is a particular data structure, that contains the information about the success it represents. This
means that events can be used as a communication means between the processes that produce them and the on
that consume them.

In Plan 9, there is a service callptumbing that provides a message delivery service. The name of the pro-
gram isplumber because it is meant to do the plumbing to convey data from message producers to consumers.
In effect, it provides a nice event delivery service. The plumber is built upon the assumption that once you look at
a particular piece of data it is clear what to do with it. For example, if a message looks like
http://Isub.org/ ... then it is clear that it should probably be delivered to a web browser. If a message
looks like pnote.c:15 |, then it is likely that it should be delivered to an editor, to open that file and show the

-112 -

line after the colon.

Like many other programs, the plumber is used through a file interface. The files that make up the interface
for the plumber are usually available/atnt/plumb.

lc /mnt/plumb
edit msntalk rules showmail
exec msword seemalil song
image none send voice
man postscript sendmail WWw

Each one of these files (but fonles andsend) is called aport, and can be used to dispatch messages to appli-
cations reading from them. Theend file is used to send a message to the plumber, which will choose an appro-
priate port for it and then deliver the message to any process reading from it.

web image image
browser, viewer viewer
[send] [edit |
L http://lsub.org/

message delivered by the plumber

Figure 5.8: The plumber provides ports, used to deliver messages to applications.

For example, figure 5.8 shows what would happen when a process writesgertieport a message carry-
ing the datahttp://Isub.org/ . Because the data looks like something famawport, the plumber delivers
the message to any process reading from that port. If more than one process is reading from the port (as shown in
the figure for images), the message is deliveredltof them.

Even if you didn’t notice, you have been using the plumber a lot. Every time you click with the mouse
button-3 at something in Acme, the editor sends a message to the plumber with the text where you did click. Most
of the times, the plumber determines that the message is for processes reading &ulit poite., editors. Thus,
the message is conveyed back to Acme in many cases. You may try it by hand. If you have an Acme running and
you execute

. plumb /NOTICE

on a shell, the fildNOTICE will show up in your editor. The plumber even knows that if there’s no editor read-
ing from theedit port, an editor should be started. You can try by executing agaipltimb command above,
but this time, while no editor is running.

How does the plumber know what to do? The flegome/lib/plumbing is read by the plumber when it
starts (usually from youshome/lib/profile while entering the system). This file has rules that instruct the
plumber to which port should each message be sent according to the message data. Furthermore, the file may
instruct the plumber to start a particular application (e.g., an editor) when no one is listening at a given port. After
the plumber has been started, its rules can be updated by copying whatever rules are necessary to the
/mnt/plumb/rules file.

It is still too early for us to inspect this file, because it usegular expressionghat are yet to be discussed.
However, it is useful to know that by default certain messages are processed in a particular way:

. Files with particular formats, like MS Word files, are delivered usually to the prograge , which con-
verts them to postscript and shows their contents on a window.

o Most other files go to the editor. Optionally, there may hbe fallowed by anaddressafter the file name, to
instruct the editor to go to a particular piece of text in the file. For exanipN@TICE:2 would make an
editor show line 2 ofNOTICE. There are other types of addresses, besides line numbers. A very useful
one is of the fornitext . Thatis, some text after/a like in INOTICE:/cent . This causes the editor to

-113-

searchfor the text (forcent in this case). The text that you type is actually a regular expression, and not
just a string. This is a more powerful mechanism to search for things, that will be seen in a later chapter.

o Mail addresses get a new window running thail program.

e Afile name ending inh is looked for at/'sys/include , and then passed to the editor. For example, a
plumb oflibc.h would open/sys/include/libc.h

e Aname for a manual page, like(1) causes the editor to display the formatted manual page. Very conve-
nient when using acme. Type the manual page, and click with the button-3 on it.

We went this far, but we still do not know what a plumber message is. A plumber message does not only carry
data. Along with the data, there is some metadata that supplies additional information about the data. Thus, each
message has a set of attributes and their values, besides the data. Some attributes are always present in a messa
(although their values might be empty). Other attributes are used by programs using a particular kind of message,
and there can be any number of them. You may also invent any attribute that you need if you use plumber mes-
sages for a particular thing. These are the standard attributes for a message:

src A string that names the source for the message, usually a program name.

dst A string that names the destination port for the message. If it is not supplied, the plumber tries to choose
using therules file.

wdir The working directory used by a process that is sending a message carrying a file name. This is neces-
sary to let the receipt of the message determine to which file the message refers to. Note that a file name
may be a relative path, and you need to know with respect which (current working) directory it is relative to.

type A string describing the type of data. Most of the times the type istgt , which is later, perhaps,
interpreted as a file name or as the name for a manual page.

ndata Number of bytes in the data for the message.

How can you use the plumber? From the shell,ghenb program lets you send messages, as you saw. From a C
program, there is a library callggumk(2) that provides an interface for using the plumber. The following pro-
gram listens for plumb messages sent todtig port, and prints the file name for each such message.

#include <u.h>
#include <libc.h>
#include <plumb.h>

void
main(int , char* [])

{

int fd;
Plumbmsg*m;
char* addr;

fd = plumbopen(“edit", OREAD);

if (fd < 0)
sysfatal(“edit port: %r");

while(m = plumbrecv(fd)){
addr = plumblookup(m->attr, "addr");
if (addr == nil)

addr = "none";

print("msg: wdir="%s’ data="", m->wdir);
write(1, m->data, m->ndata);
print("" addr="%s'\n", addr);
plumbfree(m);

}

fprint(2, "plumbrecv: %r");

close(fd);

exits(nil);

}

The functionplumbopen opens the plumb port given as its first parameter (using the open mode indicated by

- 114 -

the second one). It returns an open file descriptor where we can read or write plumb messages. In this case, we
open theedit port. The function opendnnt/plumb/edit if we do not supply a path for the file name. To

receive a message, the program cplismbrecv , which blocks reading from the port until the plumber supplies

the data from the message. This function may have to read several times, until an entire message has been read
It returns a pointer to the message read, which has this data structure:

typedef struct Plumbattr Plumbattr;
typedef struct Plumbmsg Plumbmsg;

struct Plumbmsg

{
char *src;
char *dst;
char *wdir;
char *type;
Plumbattr *attr; // list of attributes
int ndata;
char *data;

I3

struct Plumbattr

{
char *name;
char *value;
Plumbattr *next;

k

The program looks in the attribute list for the message, pointed to bwtthe field, for an attribute named

addr , which is the address following the file name in the plumbed message. To do so, jplaatislookup

giving theattr list and the name of the desired attribute. The working directory for the message, the data, and
the address attribute’s value are printed next. At last, the message data structure is deallocated by a call to
plumbfree

We can deliver messages to our program by doing clicks on Acme, with the mouse button 3, and also by
runningplumb from the shell like we do below.

. plumb /INOTICE:2

;. plumb edits.c

;. plumb /sys/doc/9/9.ps
plumb edits.c./main

The corresponding output for our program, which we did run at a different window, follows. Note how the mes-
sage for9.ps was not sent to thedit port, and therefore is not received by our program. It was sent to a differ-
ent programpage , to display the postscript file.

; 8.edits

msg: wdir="fusr/nemo/9intro’ data="/NOTICE’ addr="2’

msg: wdir="/usr/nemo/9intro’ data="/usr/nemo/9intro/edits.c’ addr="

msg: wdir="fusr/nemo/9intro’ data="/usr/nemo/9intro/edits.c’ addr="/main’

One last question. Which format is used to actually write and read messages from the file that is the plumb port?
Is it a esoteric format? No. It is simply a set of lines with the source application, destination port, working direc-
tory, message type, message attributes, and number of bytes of data, followed by the indicated number of bytes
carrying the data. This is easy to see by usiagj to read from the edit port while executing the saphemb
commands used above.

-115-

;. cat /mnt/plumb/edit
plumb

edit

/usr/nemo/9intro

text

addr=2

7

INOTICE New line supplied by us
plumb

edit

/usr/nemo/9intro

text

addr=

24

/usr/nemo/9intro/edits.c New line supplied by us

plumb

edit
/usr/nemo/9intro
text

addr=/main

24

/usr/nemo/Qintro/edits.c New line supplied by us

Delete

’

Sending a plumb message is very simple, given the helper routin#arniy2). The routineplumbsend sends

a message as described bilambmsg structure. The routinplumbsendtext
for those cases when the message is just a text string.

sig plumbsend plumbsendtext
int plumbsend(int fd, Plumbmsg *m)
int plumbsendtext(int , char *, char *, char *, char *)

For example, this would send a message with the/N&TICE .
int fd;

fd = plumbopen("send", OWRITE);

if (fd < 0)
sysfatal("open: %r");

if (plumbsendtext(fd, argvO, nil, nil, "/NOTICE") < 0)
sysfatal("send: %r");

is a even more simple version,

A similar effect can be achieved by initializing and sendirglambmsg as follows.

Plumbmsg m;
int fd;

fd = plumbopen(“send", OWRITE);
if (fd < 0)
sysfatal("open: %r");
m.src = m.dst = m.wdir = nil;
m.type = "text";
m.attr = nil;
m.data = "/NOTICE";
m.ndata = strlen(m.data);
if (plumbsend(fd, &m) < 0)
sysfatal("send: %r");

-116 -

Problems

1

N

What would this command do?
cp /fd/1 /fd/0

Why do you think that the code to initialize standard input, output, and error in the first process differs from
this?

open(“/dev/cons, ORDWR);
dup(0, 1);
dup(0, 2);

The code

fd = open("/NOTICE", OREAD);
dup(fd, 0);
close(fd);

may fail and leave standard input closed. When does this happen? Why do you think this code was used for
a program that redirected standard inpuftriotice ?

Show that a process that reads from an empty pipe gets blocked and will never run. Which state is reported
by ps for such process?

Modify the code for thesrvecho program to perform the echo through the pipe, and not to the console.
Use the programon(1) to connect to the pipe throudérv/echo and test that it works.

6 — Networking

6.1. Network connections

Plan 9 is a distributed system. But even if it was as its ancestor, UNIX, a centralized system that was designed just
for one machine, it is very important to be able to use the network to provide services for other machines and to
use services from others. All the operating systems that are in use today provide abstractions similar to the one
whose interface is described here, to let you use the network.

This chapter may be hard to understand if you have not attended a computer networks course, but we try to
do our best to explain how to use the network in any case. All the programs you have used to browse the Web,
exchange electronic mail, etc. are implemented using interfaces that are similar to the ones described below (they
use to be more complex, though).

In general, things work as for any other service provided by the operating system. First, the system provides
some abstraction for using the network. As we will be seeing, Plan 9 uses also the file abstraction as its primary
interface for using networks. Of course, files used to represent a network have a special meaning, i.e., behave in a
particular way, but they are still used like files. Other operating systems use a whole bunch of extra system calls
instead, to provide the interface for their network abstraction. Nevertheless, the ideas, and the programmatic inter-
face that we will see, are very similar.

Upon such system-provided abstraction, library functions may provide a more convenient interface for the
application programmer. And of course, in the end, there are many programs already installed in the system that,
using these libraries, provide some services for the user.

A network in Plan 9 is a set of devices that provide the ability to talk with other machines using some physi-
cal medium (e.g, some type of wire or the air for radio communication).

A network device in Plan 9 may be an actual piece of hardware, but it can also be a piece of software used to
speak some protocol. For example, most likely, your PC includes an ethernet card. It uses an RJ45 connector to
plug your computer to an ethernet network (just some type of cabling and conventions). The interface for the eth-
ernet device in Plan 9 is just a file tree, most likely foundnet/etherO

Ic /net/ether0
0 1 2 addr clone ifstats stats

Machines attached to the wire have addresses, used by the network hardware to identify different machines
attached to the wire. Networks using wireless communication are similar, but use the air dwitieirWe can
use the file interface provided by Plan 9 for our ethernet device to find out which one is its address:

. cat /net/etherO/adadr
000c292839fc;

As you imagine, this file is just an interface for using your ethernet device, in this case, for asking for its address.

Once you have the hardware (e.g., the ethernet card) for exchanging messages with other machines attached
to the same medium (wiring or air), your machine and exchange bytes with them. The problem remains of how to
send messages to any machine in the Internet, even if it is not attached to the same wire your machine is attached
at. One protocol very important to the Internet, IP (Internet Protocol), is provided in Plan 9 by a device driver
called IP. This protocol is called a network protocol because it gives an address to each machine in the Internet,
its IP-address, and it knows how to reach any machine, given its address. The interface for the IP network in Plan
9 is similar to the one we saw for Ethernet:

. Ic /net/ipifc
0 1 clone stats

This is not yet enough for communicating with programs across the internet. Using IP, you may talk to one
machine (and IP cares about how to reach that machine through the many different wires and machines you need
to cross). But you need to be able to talk to gmecess This is achieved by using another protocol, built upon

the network protocol. This kind of protocol gives addresses'fimilboxe$ within each machine, callegorts.

-118 -

Therefore, an address for this protocol is a combination of a machine address (used to reach that machine through
the underlying network protocol) andoart number.

In few words, the network protocol gives addresses for each machine and knows how to exchange messages
between machines. Today, you are going to use IP as your network protocol. The transport protocol gives port
numbers for processes to use, and knows how to deliver messages to a particular port at a particular machine.
Think of the network address as the address for a building, and the port number as the number for a mailbox in the
building.

Some transport protocols provide an abstraction similar to the postal service. They deliver individual mes-
sages that may arrive out of order and may even get lost in the way. Each such message isdzatgdam
which is the abstraction provided by this kind of transport. In the Internet, the datagram service is usually UDP.
The IP device driver in Plan 9 provides an interface for using UDP, similar to the ones we saw for other protocols
and network devices:

Ic /net/udp
0 1 clone stats

Other transports use the ability to send individual messages to build a more convenient abstraction for maintain-
ing dialogs, similar to a pipe. This abstraction is callezbanection It is similar to a pipe, but differs from it in

that it can go from one port at one machine to another port at a different machine in the network. This type of
communication is similar to a phone call. Each end has an address (a phone number), they must establish a con-
nection (dial a number, pickup the phone), then they can speak to each other, and finally, they hangup. The anal-
ogy cannot be pushed too far, for example, a connection may be established if both ends call each other, which
would not be feasible when making a phone call. But you get the idea. In the Internet, the most popular protocol
that provides connections is TCP, it provides them using IP as the underlying transport protocol (hence the name
TCP/IP for this suite of protocols). The IP device driver in Plan 9 provides the interface for using TCP. It has the
now familiar file interface for using a network in Plan 9:

;. lc /net/tep

0 11 14 17 2 22 stats
1 12 15 18 20 23 26
10 13 16 19 21 24 clone

Each network is represented in Plan 9 as a directory, that has at leadbaee file, and several other directo-

ries, calledine directories. Opening thelone file reserves a new connection, and creates a directory that repre-
sents the interface for the ndime used to establish a connection. Line directories are named with a number, and
kept within the directory for the network. For exampleet/tcp/14 is the interface for our TCP connection
number 14. It doesn’t need to be a fully established connection, it may be in the process of getting established.
But in any case, the directory represents what can be a particular, individual, TCP connection. The program that
opensclone may read this file to discover the number assigned to the line directory just created.

As shown in figure 6.1, for each connection Plan 9 provides at leest afile and adata file. For exam-
ple,

Ic /net/tcp/14
ctl data err listen local remote status
/net/tcp
clone 0
ctl data ctl data ctl data ctl data

Figure 6.1: The file interface for a network (protocol) in Plan 9.

-119 -

The file ctl can be used to perform control operations to the connection. For example, to hangup (break) this con-
nection, we can just

echo hangup >/net/tcp/14

Thedata file is used to send and receive bytes through the connection. It can be used very much like one end of
a pipe. Writing to the data file delivers bytes through the connection that are to be received at the other end.
Reading from the data file retrieves bytes sent from the process writing at the other end. Just like a pipe. Only
that, if a transport provides datagrams, each writedata file will send a different datagram, and it may arrive

out of order or get lost.

There are more differences. An important one is that many transport protocols, including TCP, do not
respect message boundaries. This means that data sent through a connection by several writes may be received a
the other end by a single read. If your program has to receive messages from a network connection, it must know
how much to read for each message. A single call to read may return either part of a message or perhaps more
than one message.

In the line directory for our TCP connection, tlezal file has the local address (including the port num-
ber) for the connection. This identifies the local end ofpifge. Theremote file serves the same purpose for the
other end of the connection.

A network address in Plan 9 is a string that specifies the network (e.g., the protocol) to use, the machine

address, and the port number. For examiue!193.147.81.86!564 is a network address that says: Using
the TCP protocol, the machine address is 193.147.81.86, and the port number is 564. Fortunately, in most cases,
we may use names as well. For example, the addogpde/hale!9fs is equivalent to the previous one, but

uses the machine namehale , and the service name@fs , instead of the raw addresses understood by the net-
work software. Often, ports are used by programs to provide services to other programs in the network. As a
result, a port name is also known aseavicename.

From the shell, it is very easy to create connections. drlie program dials a network address and, once it
has established a connection to that address, posts a file descriptor for the connestion .afThis descriptor
comes from opening thagata file in the directory for the connection, but you may even forget this. Therefore,

. Srv tep!whale!9fs
post...

posts at/srv/tcp!'whale!9fs a file descriptor that corresponds to an open network connection from this
machine to the port naméils at the machine known aghale , in the network speaking the protodop .

To connect to the web server for LSUB, we may just

. Srv tep!lsub.org!http
post...

Here,tcp is just a shorthand fainet/tcp , which is the real (file) name for such network in Plan 9. Now we
can see thaftsrv/tcp!lsub.org!http is indeed a connection to the web servelsab.org by writing
an HTTP request to this file and reading the server’s reply.

;. echo GET /index.html >>/srv/tcp!lsub.org’http Get the main web page
; cat /srv/tcplisub.org!http

<html>

<head>

<title> Laboratorio de Sistemas --- Is </title>

<link rev="made" href="mailto:Is@plan9.escet.urjc.es">

</head>

<body BGCOLOR=white>

<hl> Is --- Laboratorio de Sistemas [ubicuos] del GSyC </h1>

...and more output omitted here...

If we try to do the same again, it will not work, because the web server hangs up the connection after attending a
request:

-120 -

echo GET / >>/srv/tcp!lsub.org!http
;cat /srv/tep!lsub.org!http
cat: error reading /srv/tcpllsub.org!http: Hangup
;. echo GET / >>/srv/tcp!lsub.org!http
echo: write error: Hangup

And, as you can see, it takes some time for our machine to notice. The first write seemed to succeed. Our machine
was trying to send the strinGET.. to the web server, but it couldn’t really send it. The connection was closed
and declared as hung up. Any further attempt to use it will be futile. What remains is to remove the file from
Isrv

rm /srv/tcp!lsub.org!htip

There is a very popular command nantebhet , that can be used to connect to servers in the Internet and talk

to them. It uses the, so callemlnet protocol But in few words, it dials an address, and thereafter it sends text
from your console to the remote process at the other end of the connection, and writes to your console the text
received. For example, this command connects to the e-mail server rundgudpairg , and we use our con-

sole to ask this server for help:

telnet -r tcp!lsub.org/smtp
connected to tcp!lsub.org!smtp on /net/tcp/52
220 Isub.org SMTP
help
250 Read rfc821 and stop wasting my time
Delete

We gave the optionr totelnet , to ask it not to printcarriage-returncharacters (its protocol uses the same
convention for new lines used by DOS). When telnet connected to the address we gave, it printed a diagnostic
message to let us know, and entered a loop to send the text we type, and to print the text it receives from the other
end. Our mail server wrote a salutation through the connection (the line stagihg), and then we typekelp ,

which put our mail server into a bad mood. We interrupted this program by hitetgtein the terminal, and the
connection was terminated whaginet died. A somewhat abrupt termination.

It is interesting to open several windows, and connect from all of them to the same address. Try it. Do you
see howeachtelnet s using its own connection? Or, to put it another way, all the connections hagaithe
address for the other end of the connection, yet theyliffierentconnections.

To name a connection, it does not suffice to name the address for one of its endsnugbgive both
addresses (for the two ends) to identify a connection. It is the four identifiers local address, local port, remote
address, and remote port, what makes a connection unique.

It is very important to understand this clearly. For example, in telmet example, you cannot know
which connection are you talking about just by sayfiipe connection totcp!lsub.org!smtp ”. There can
be a dozen of such connections, all different, that happen to reach that particular address. They would differ in the
addresses for their other extremes.

6.2. Names

Above, we have been using names for machines and services (ports). However, these names must be translatec
into addresses that the network software could understand. For example, the machinehzenemust be
translated to an IP address lik83.147.81.86 . The network protocol (IP in Internet) knows nothing about
names. It knows about machine addresses. In the same way, the transport protocol TCP knows nothing about the
service with naméttp . But it does know how to reach the port numig€r, which is the one that corresponds

to the HTTP service.

Translating names into addresses (including machine and service names) is done in a different way for each
kind of network. For example, the Internet has a name service known as DNS (domain name service) that knows
how to translate from a name likehale.lsub.org into an IP address and vice-versa. Besides, for some
machines and services there may be names that exist only within a particular organization. Your local system
administrator may have assigned names to machines that work only from within your department or laboratory. In
any case, all the information about names, addresses, and how to reach the Internet DNS is kept in a (textual)

-121 -

database known as tmetwork databaseor justndb. For example, this is the entry in oflib/ndb/local
file for whale :

dom=whale.Isub.org ip=193.147.81.86 sys=whale

When we usedavhale in the examples above, that name was translatedlis8147.81.86 and that was the
address used. Also, this is the entry in dilvy/ndb/common file for the service known aSfs when using
the TCP protocol:

tcp=9fs port=564

When we used the service na®is , this name was translated into the port numb@4 , that was the port num-
ber used. As a result, the addrésg!whale!9fs was translated intécp!193.147.81.86!564 and this
was used instead. Names are for humans, but (sadly) the actual network software prefers to use addresses.

All this is encapsulated into a program that does the translation by itself, relieving from the burden to all
other programs. This program is known as tomnection serveror cs. We can query the connection server to
know which address will indeed be used when we write a particular network address. The posgreary
does this. Itis collected @in/ndb along with other programs that operate with the network data base.

;. ndb/csquery

> tcp!whale!9fs

/net/tcp/clone 193.147.81.86!564
>

[l

The ">" sign is the prompt froncsquery , it suggests that we can type an address asking for its translation. As

you can see, the connection server replied by giving the path faritime file that can be used to create a new

TCP connection, and the address as understood by TCP that corresponds to the one we typed. No one else has tc
care about which particular network, address, or port number corresponds to a network address.

All the information regarding the connections in use at your machine can be obtained by looking at the files
below/net . Nevertheless, the programetstat provides a convenient way for obtaining statistics about what
is happening with the network. For example, this is what is happening now at my system:

, hetstat

tecp O nemo Listen audio 0 i

tcp 1 Established 5757 ofs whale.lsub.org

tecp 2 nemo Established 5765 ads whale.Isub.org
tecp 3 nemo Established 5759 9fs whale.Isub.org
tcp 4 nemo Listen what 0 i

tcp 5 nemo Established 5761 ads whale.lsub.org
tcp 6 nemo Established 5766 ads whale.Isub.org
tcp 7 nemo Established 5763 9fs whale.lsub.org

tcp 8 nemo Listen kbd 0 i

...many other lines of output for tcp...

udp O network Closed 0 0

udp 1 network Closed 0 0

Each line of output shows information for a particular line directory. For example, the TCP connection number 1
(i.e., that in/net/tcp/1) is established. Therefore, it is probably being used to exchange data. The local end
for the connection is at port 5757, and the remote end for the connection is the port for 8&viaethe machine

with namewhale.lsub.org . This is a connection used by the local machine to access the 9P file server at
whale . Itis being used to access our main file server from the terminal where | exaueitgdt . The states

for a connection may depend on the particular protocol, and we do not discuss them here.

In some cases, there may be problems to reach the name service for the Internet (our DNS server), and it is
very useful to calhetstat with the-n flag, which makes the program print just the addresses, without translat-
ing them into (more readable) names. For example,

-122 -

; netstat -n

tecp O nemo Listen 11004 0 ::

tcp 1 Established 5757 564 193.147.71.86
tcp 2 nemo Established 5765 11010 193.147.71.86
tcp 3 nemo Established 5759 564 193.147.71.86
tcp 4 nemo Listen 11003 0 :

tcp 5 nemo Established 5761 11010 193.147.71.86

...many other lines of output

It is very instructive to compare the time it takes for this program to complete with, and without-nsing

To add yet another tool to your network survival kit, fipgping program sends particular messages that
behave like probes to a machine (to an IP address, which is for a network interface found at a machine, indeed),
and prints one line for each probe reporting what happen. It is very useful because it lets you know if a particular
machine seems to be alive. If it replies to a probe, the machine is alive, no doubt. If the machine does not reply to
any of the probes, it might be either dead, or disconnected from the network. Or perhaps, it is your machine the
one disconnected. If only some probes get replied, you are likely to have bad connectivity (your network is losing
too many packets). Here is an example.

;. Ip/ping Isub.org

sending 32 64 byte messages 1000 ms apart
0: rtt 152 ps, avg rtt 152 ps, ttl = 255

1:rtt 151 ps, avg rtt 151 ps, ttl = 255

2:rtt 149 ps, avg rtt 150 ps, ttl = 255

In the outputrtt is for round trip time the time for getting in touch and receiving the reply.

6.3. Making calls

For using the network from a C program, there is a simple library that provides a more convenient interface that
the one provided by the file system from the network device. For example, this is our simplified versson for
It dials a given network address to establish a connection and posts a file descriptor for the open connection at
Isrv
@3rv.c

#include <u.h>

#include <libc.h>

void
main(int argc, char* argv[])

{

int fd, srvfd;
char* addr;

char fname[128];
if (argc = 2){

fprint(2, "usage: %s netaddr\n”, argv[0]);
exits("usage");

}

addr = netmkaddr(argv[1], "tcp", "9fs");
fd = dial(addr, nil, nil, nil);
if (fd < 0)
sysfatal("dial: %s: %r", addr);

-123 -

seprint(fname, fname+sizeof(fname), "/srv/%s", argv[1]);
srvfd = create(fname, OWRITE, 0664);
if (srvfd < 0)
sysfatal("can't post %s: %r", fname);
if (fprint(srvfd, "%d", fd) < 0)
sysfatal("can't post file descriptor: %r");
close(srvfd);
close(fd);
exits(nil);

}

Usingargv[l] verbatim as the network address to dial, would make the program work only when given a com-
plete address. Including the network name and the service name. Like, for example,

8.srv tep!whale!9fs

Instead, the program caltetmkaddr which is a standard Plan 9 function that may take an address with just the
machine name, or perhaps the network name and the machine name. This function completes the address using
default values for the network and the service, and returns a full address ready to use. Wepmalke default

value for the network (protocol) arfifs as the default value for the service name. Therefore, the program admits

any of the following, with the same effect that the previous invocation:

;. 8.srv tcplwhale
. 8.srv whale

The actual work is done bgial . This function dials the given address and returns an open file descriptor for the
connection’s data file. A write to this descriptor sends bytes through the connection, and a read can be used to
receive bytes from it. The function is used in the same way for both datagram protocols and connection-oriented
protocols. The connection will be open as long as the file descriptor returned remains open.
sig dial
int dial(char *addr, char *local, char *dir, int *cfdp)

The parametelocal permits specifying the local address (for network protocols that allow doing so). In most
cases, givemil suffices, and the network will choose a suitable (unused) local port for the connection. When
dir is not nil, it is used by the function as a buffer to copy the path for the line directory representing the connec-
tion. The buffer must be at least 40 bytes long. We changed the previous program to do print the path for the line
directory used for the connection:

fd = dial(addr, nil, dir, nil);
if (fd < 0)

sysfatal("dial: %s: %r", addr);
print("dial: %s0, dir);

And this is what it said:

;. 8.srv tcplwhale!9fs
dial: /net/tcp/24

The last parameter for diatfdp points to an integer which, when passing a non-nil value, can be used to obtain
an open file descriptor for the connection. In this case, the caller is responsible for closing this descriptor when
appropriate. This can be used to write to the control file requests to tune properties for the connection, but is usu-
ally unnecessary.

There is a lot of useful information that we may obtain about a connection by cghitrgetconninfo
This function returns nothing that could not be obtained by reading files from files in the line directory of the con-
nection, but it is a very nice wrap that makes things more convenient. In general, this is most useful in servers, to
obtain information to try to identify the other end of the connection, (i.e., the client). However, because it is much
easier to make a call than it is to receive one, we prefer to show this functionality here instead.

Parameters fonetconninfo are the path for a line directory, and one of the descriptors for either a con-
trol or a data file in the directory. When nil is given as a path, the function uses the file descriptor to locate the
directory, and read all the information to be returned to the caller. The function allocates memory for a

- 124 -

NetConninfo structure, fills it with relevant data, and returns a pointer to it

typedef struct NetConninfo NetConninfo;
struct NetConninfo

{
char *dir; [* connection directory */
char *root; * network root */
char *spec; /* binding spec */
char *Isys; /* local system */
char *Iserv; * local service */
char *rsys; [* remote system */
char *rserv; /* remote service */
char *laddr; /* local address */
char *raddr; [* remote address */
h
This structure must be released by a calireenetconninfo once it is no longer necessary. As an example,
this program dials the address given as a parameter, and prints all the information returned by
getnetconninfo . Its output for dialingcp!whale!9fs follows.
onninfo.cr

#include <u.h>
#include <libc.h>

void

main(int argc, char* argv[])

{
int fd, srvfd;
char* addr;
NetConnlinfo*i;
if (argc = 2){

fprint(2, "usage: %s netaddr\n”, argv[0]);
exits("usage");

}

addr = netmkaddr(argv[1], "tcp", "9fs");
fd = dial(addr, nil, nil, nil);
if (fd < 0)

sysfatal("dial: %s: %r", addr);
i = getnetconninfo(nil, fd);
if (i == nil)

sysfatal(“cannot get info: %r");
print("dir:\t%s\n", i->dir);
print("root:\t%s\n", i->root);
print("spec:\t%s\n", i->spec);
print("lsys:\t%s\n", i->Isys);
print(“lserv:\t%s\n", i->Iserv);
print("rsys:\t%s\n", i->rsys);
print("rserv:\t%s\n", i->rserv);
print("laddr:\t%s\n", i->laddr);
print("raddr:\t%s\n", i->raddr);
freenetconninfo(i);
close(fd);
exits(nil);

-125 -

8.out tcp!whale!9fs
dir: Inet/tcp/46

root: Inet

spec: #10

Isys: 212.128.4.124
Iserv: 6672

rsys: 193.147.71.86
rserv. 564

laddr: tcp!212.128.4.12416672
raddr: tcp!193.147.71.86!564

The line directory for this connection wéset/tcp/46 , which belongs to the network interface/aet . This
connection was usinglO , which is the first IP interface for the machine. The remaining output should be easy
to understand, given the declaration of the structure above, and the example output shown.

6.4. Providing services

We know how to connect to processes in the network that may be providing a particular service. However, it
remains to be seen how to provide a service. In what follows, we are going to implement an echo server. A client
for this program would be another process connecting to this service to obtagharservice This program pro-

vides the service (i.e., provides the echo) and is therefeeneer The echo service, surprisingly enough, con-
sists on doing echo of what a client writes. When the echo program reads something, writes it back through the
same connection, like a proper echo.

The first thing needed is tannouncethe new service to the system. Think about it. To allow other pro-
cesses t@onnecto our process, it needs a port for itself. This is like allocatifignailboX’ in the “building” to be
able to receive mail. The functicennounce receives a network address and announces it as an existing place
where others may send messages. For example,

announce("tcplalboran'echo”, dir);

would allocate the TCP port for the service naneetho and the machine namedboran . This makes sense

only when executed in that machine, because the port being created is an abstraction for getting in touch with a
local process. To say it in another way, the address given to announce must be a local address. It is a better idea
to use

announce("tcp!*!lecho”, dir);

instead. The special machine nafti€ refers to any local address for our machine. This call reserves the port
echo for any interface used by our machine (not just for the one naatkedran). Besides, this call to
announce now works when used at any machine, no matter its name.

This function returns an open file descriptor to ttie file of the line directory used to announce the port.
The second parameter is updated with the path for the directory. Note that this line directory is an artifact which,
although has the same interfacent a connection. It is used just to maintain the reservation for the port and to
prepare for receiving incoming calls. When the port obtained by a calhtmunce is no longer necessary, we
can close the file descriptor for tlo#l file that it returns, and the port will be released.

This program announces the port 9988, and sleeps forever to let us inspect what happen.

-126 -

#include <u.h>
#include <libc.h>

void

main(int argc, char* argv[])

{
int cfd;
char dir[40];

cfd = announce("tcp!*19988", dir);
if (cfd < 0)
sysfatal("announce: %r");
print(*announced in %s\n", dir);
for(;;)

sleep(1000);
}
We may now do this
; 8ann &
;. announced in /net/tcp/52 We typed return here, to let you see
; netstat | grep 9988
tcp 52 nemo Listen 9988 0

According tonetstat , the TCP port number 9988 is listening for incoming calls. Note how the path printed by
our program corresponds to the TCP line number 52.

Now let’s try to run the program again, without killing the previous process.

8.out
announce: announce writing /net/tcp: address in use

It fails! Of course, there is another process already using the TCP port number 9988. This new process cannot
announce that port number again. It will be able to do so only when nobody else is using it:

;. kill 8.annfrc
; 8anné&
;announced in /net/tcp/52

Our program must now await for an incoming call, and accept it, before it could exchange data with the process at
the other end of the connection. To wait for the next call, you maylisgn . This name is perhaps misleading
because, as you could see, atteanounce , the TCP line is already listening for calls. Listen needs to know the

line where it must wait for the call, and therefore it receives the directory for a previous announce.

Now comes an important point, to leave the line listening while we are attending a call, calls are attended at
a differentline than the one used to listen for them. This is like an automatic transfer of a call to another phone
line, to leave the original line undisturbed and ready for a next call. So, lggten has received a call, it
obtains a new line directory for the call and returns it. In particular, it returns an open file descriptordibr its
file and its path.

We have modified our program to wait for a single call. This is the result.

-127 -

#include <u.h>
#include <libc.h>

void

main(int argc, char* argv[])

{
int cfd, Ifd;
char adir[40];
char dir[40];

cfd = announce("tcp!*!9988", adir);
if (cfd < 0)

sysfatal("announce: %r");
print(*announced in %s (cfd=%d)\n", adir, cfd);
Ifd = listen(adir, dir);
print("attending call in %s (Ifd=%d)\n", dir, Ifd);
for(;;)

sleep(1000); I/l let us see

}

When we run it, it waits until a call is received:

. 8.listen
announced in /net/tcp/52 (cfd=10)

At this point, we can open a new window and teinet to connect to this address

; telnet tcp!$sysname!9988
connected to tcp'alboran!9988 on /net/tcp/46

which makes our program receive the call:
attending call in /net/tcp/54 (Ifd=11)

You can see how there are two lines used. The line number 52 is still listening, and the call received is placed at
line 54, where we might accept it. By the way, the line number 46 is the other end of the connection.

Now we can do something useful. If we accept the call by calingept , this function will provide an
open file descriptor for thdata file for the connection, and we can do our echo business.

metecho.q]
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{
int cfd, Ifd, dfd;
long nr;
char adir[40];
char Idir[40];
char buf[1024];

cfd = announce("tcp!*!9988", adir);
if (cfd < 0)

sysfatal("announce: %r");
print("announced tcp!*19988 in %s\n", adir);

-128 -

for(;;{
Ifd = listen(adir, Idir);
if (Ifd < 0)
sysfatal("listen: %r");
dfd = accept(Ifd, Idir);
if (dfd < 0)
sysfatal("can’t accept: %r");
close(Ifd);
print("accepted call at %s\n", Idir);
for(;;{
nr = read(dfd, buf, sizeof buf);
if (nr <=0)
break;
write(dfd, buf, nr);
}
print("terminated call at %s\n", Idir);
close(dfd);

}

If we do as before, and ugelnet to connect to our server and ask for a nice echo, we get the echo back. After
quittingtelnet , we can connect again to our server and it attends the new call.

telnet -r tcp!$sysname!9988
connected to tcp'alboran!9988 on /net/tcp/46
Hi there!
Hi there!
Delete
telnet -r tcp!$sysname!9988
connected to tcp'alboran!9988 on /net/tcp/54
Echo echo...
Echo echo...
Delete

’

And this is what our server said in its standard output:

8.netecho
announced tcp!*19988 in /net/tcp/52
accepted call at /net/tcp/54
terminated call at /net/tcp/54
accepted call at /net/tcp/55
terminated call at /net/tcp/55

The program is very simple. To announce our port, wait for call, and accept it, it has to cadnjustince ,

listen , andaccept . At that point, you have an open file descriptor that may be used as any other one. You
just read and write as you please. When the other end of the connection gets closed, a reader receives an EOF indi-
cation in the conventional way. This means that connections are used like any other file. So, you already know
how to use them.

Our program has one problem left to be addressed. When we connected to itelisgtg , there was only
one client at a time. For this program, when one client is connected and using the echo, nobody else is attended.
Other processes might connect, but they will be kept on hold waiting for this process tlistl and
accept. This is what is called aequential server because it attends one client after another. You can double
check this by connecting from two different windows. Only the first one will be echoing. The echo for the second
to arrive will not be done until you terminate the first client.

A sensible thing to do would be to fork a new process for each client that connects. The parent process may
be kept listening, waiting for a new client. When one arrives, a child may be spawned to serve it. This is called a
concurrent server, because it attends multiple clients concurrently. The resulting code is shown below.

-129 -

There are some things to note. An important one is that, as you know, the child process has a copy of all the
file descriptors open in the parent, by the time of the fork. Also, the parent has the descriptor open for the new call
received after callingisten , even though it is going to be used just by the child process. We tftbsan the
parent, anafd in the child.

We might have lefcfd open in the child, because it would be closed when the child terminates by calling
exits , after having received an end of file indication for its connection. But in any case, it should be clear that
the descriptor is open in the child too.

Another important detail is that the child now cadigits after attending its connection, because that was
its only purpose in life. Because this process has (initially) all the open file descriptors that the parent had, it may
be a disaster if the child somehow terminates attending a client and goes bacKigiezall . Well, it would be
disaster because it it what you expect when you write the program.

#include <u.h>
#include <libc.h>

void

main(int argc, char* argv[])

{
int cfd, Ifd, dfd;
long nr;
char adir[40];
char Idir[40];
char buf[1024];

cfd = announce("tcp!*!9988", adir);
if (cfd < 0)

sysfatal("announce: %r");
print("announced tcp!*19988 in %s\n", adir);

for(;;{
Ifd = listen(adir, Idir);

if (Ifd < 0)
sysfatal("listen: %r");
switch(fork()){
case -1:
sysfatal(“fork: %r");
case 0:
close(cfd);
dfd = accept(Ifd, Idir);
if (dfd < 0)
sysfatal(“"can’t accept: %r");
close(Ifd);
print(“accepted call at %s\n", Idir);
for(;;{
nr = read(dfd, buf, sizeof buf);
if (nr <=0)
break;
write(dfd, buf, nr);
}
print(“terminated call at %s\n", Idir);
exits(nil);
default:
close(Ifd);
}

-130 -

6.5. System services

You know that certain machines provide several services. For example, the machine krisumag in the
Internet is a Plan 9 system. The machine name is inée@amar , but it is registered in DNS dsub.org
This particular machine provides web, mail, and several other services, including echo!

telnet tcp!lsub.orglecho
Hi
Hi
Delete

’

How can it be? Before reading this book, you might think that the operating system was arranging for this services
to run at that machine. But now you know that the operating system is doing nothing, but for supplying the
abstractions used to provide such services.

When this particular machine starts, Plan 9 executesascript as part of the normal boot process. This
script runs the prograraux/listen , which listens for incoming connections and executes programs to attend
them. The machine provides services because certain programs are started to attend incoming connections targetec
to ports.

Following the modular design of the rest of the systésten does not even decide which ports are to be
listened. This program looks at tie/bin/service directory, for files with names likécp7 , tcp25 , and
so on. Each file corresponds to a service provided by the machine, and has a name that corresponds to the protocol
and port number where connections for the service may arrive.

. Ic /re/bin/service

i117007 tcpl7007 tcp220 tcp9
i117009 tcp17009 tcp25 tcp993
i117010 tcpl7010 tcp53 tcp995
tcpl13 tcpl7013 tcp565 telcodata
tcp143 tcp19 tcp7

For many services, there are conventions for which ports to use for them in the Internet (you might call it a stan-
dard). For example, TCP port 7 corresponds to the echo service. And this is how it is implemented in Plan 9:

;cat /re/bin/service/tcp7
#!/bin/rc
/bin/cat

’

Indeed, each one of the files in tkervice directory is an executable program that implements a service. All
thatlisten has to do, is to listen for calls to the ports determined by the file names, and execute the files to
attend each incoming call. Listen arranges for the standard input and output of the process attending a call to be
redirected to the connection itself. For a service, reading from standard input is reading from the connection, and
writing to standard output is writing to the connection.

This is a nice example of how simple things can be. Listen is in charge of listening and spawning processes
for attending services. The directory keeps the set of files that corresponds to services. We can use familiar pro-
grams likelc to list them! Each service is provided by a separate, independent program. And everything fits
together.

By the way, there is an important lesson to be learned here. It is much more simplectt usgimplement
an echo server than it is to write our own program. If we do not search the manual and try to see if what we are
trying to do is already done, we get a lot of extra work as a penitence for this sin.

6.6. Distributed computing

The time has come to reveal another lie we told. Therdatameekind of machines in a Plan 9 network, not just

two. You already know about terminals and file servers. There areGidd servers A CPU server is meant to

let the user execute commands on it, in particular, commands that make intensive use of the processor. Today,
with the powerful machines that we have available, most terminals can cope with anything you might want to exe-
cute on them.

-131-

But CPU servers have found their way in this new world and are still very useful for running the file server
program (which used to be a different kernel), executing periodic user tasks automatically, and providing services
like Web, mail, and the like.

A CPU server runs the same system software used in a terminal, however, its kernel is compiled with the
variablecpuserver set to true, and it behaves slightly differently. The main difference is thabdlogé pro-
gram executes the scrifit/bin/cpurc instead of/rc/bin/termrc to initialize the system for operation.
You may remember that one of the things this script does is ruraumgisten to run several system services
upon incoming calls from clients.

Other systems, most notably UNIX, start most existing system services during the boot process, in a similar
way. That is why you can connect to a UNIX machine to execute commands on it (e.g.telsty or ssh),
but you cannot do the same to your Plan 9 terminal. If you want to connect to your terminal to use a particular ser-
vice, you must start that service first (i.e., isten or its variant that listens just for one servitisienl).

By the way, if you ever wondered what is the difference between the different flavors of Windows running
on a PC, it is the same. They compiled the system with different parametéopfonizing’ the system for differ-
ent kinds of usage. Also, they arranged for the system to start different services depending on the kind of edition.

The cpu command makes a connection to a CPU server, using by default that nanegy as set by
your system administrator. The connection is used to run a program in the CPU server, whichyidefault.
The net effect is that you can connect to a shell at any CPU server, and run commands on it. This is an example:

echo $sysname
alboran
; cpu
cpu% echo $sysname
aquamar
control-d

echo $sysname
alboran

Your profile , executed each time you enter the system, changes the prompt for the shell to advise you that it is
not running at your terminal. When an initial shell is started for you at a machine (a CPU server, a terminal, etc.),
it executes youbhome/lib/profile file. Now, the process that started the shell for you defined a environ-
ment variable to indicate which kind of session you are using. For terminals, the vasabliee has
terminal as its value. However, on CPU servers this variable may bpueor rx as its value, depending on
how you connected to the CPU server. Your profile may do different things (like adjusting the shell prompt),
depending or$terminal

A more rudimentary alternative is provided, for those cases when you want to execute just one command at
another machine. Itis called , and accepts a machine name and a command to run on it.

. rx aquamar ‘echo $sysname’
agquamar

’

Note how we had to quote the whole command, which is to be executed verbatim by the remote machine,

Problems

1 Use/net to see which networks are available at your terminal. Determine the local address for your termi-
nal for each one of the networks.

2 Repeat the second problem of chapter 1 for the terminals in your network/libfselb/local to
locate other terminals.

3 Start the echo server implemented in this chapter, and try to hangup its connection using the shell.
Which processes are listening to the network in your terminal? What do they do? (use the manual)

5 Which one is the IP address fgoogle.com ? Is the machine alive? Try to determine that in several dif-
ferent ways.

Implement a time of day service. It must return the local time to any client.téliset to test it.
Implement a client program for the server from the previous problem.

N

~N O

10

-132 -

Print all the information you can determine for all clients connecting to your time of day server.

Change your server so it could be started usingy/listen1 . Testit.
Change your profile to adjust the shell prompt according to the machine name. It must work both for termi-
nals and connections to CPU servers.

7 — Resources and Names

7.1. Resource fork

In chapter 4 we usetbrk to create new processes. We said tloak was a system call. We lied. It is not a
venial lie, like when saying thagetenv is a system call (because it is a library function). It is a terrible lie,
because Plan 9 processes are not just clones. Now it is time to tell the truth.

A Plan 9 process is mostly what you imagine because of what we have said so far. It is a flow of control
known by the kernel, which creates the illusion of having a dedicated processor to run it. Each process has certain
resources that are abstractions provided by Plan 9 to let it perform its job. We have seen many of such resources:
Memory, environment variables, file descriptors, and note groups.

When we discusseibrk , we said that a child process isapyof the parent process. Therefore, it seemed
that all resources for the parent were copied to build a (child) clone. Bebakseis so hard to understand the
first time you use it, we decided to lie.

But the truth is that to create a Plan 9 process you do not have to copy all the resources from the parent pro-
cess. You may specify which resources are to be copied, which ones arshareewith the parent, and which
ones are to be branmtew(and empty) just for the child.

The system call doing this igork , andfork is equivalent to a call tofork asking for a copy of the
parent’s file descriptor table, a new flow of control, and a copy of the parent’'s memory. On the other hand, envi-
ronment variables, and the note group are shared with the parent.

This is the complete list of resources for a process, which can be controlledriging :

. The flow of control There is not much we can do about it, but to ask for new one. Each one is called a
process

e Thefile descriptor table. Also known as the file descriptor group. You can ask for a copy, or for sharing
with the child when creating a process, or for a new table with all descriptors closed.

o Environment variables. Also known as the environment group. Like before, You can ask for a copy, or for
sharing with the child when creating a process, or for a new set of environment variables with no variable
defined on it.

e Thename space Utterly important, and central to Plan 9. We have been ignoring this until now. This is the
resource that maps file names to files. We study it in this chapter.

e Theworking directory and theroot directory, used to walk the file tree for relative and absolute paths.

e Thememory segments You can ask for sharing the data with the child, when creating a process, or to
make a copy for the child. The text, or code, is always shared. It is read-only, and it would be a waste to
copy memory that is going to remain the same. The stadkv®rshared, because each process has its own
flow of control and needs its own stack.

e Thenote group. You can ask for sharing it with the child, when creating a process, or to obtain your own
group to be isolated from others.

e Therendezvous group A resource used to make groups of processes that can usentliezvous sys-
tem call to coordinate among them. This is yet to be seen.

Besides the requests mentioned above, there are several other thinfsrkhatcan do, that we will be seeing in
this chapter along with them.

Before proceeding, we are going to dfoak , but in a slightly different way:

- 134 -

morkls.c
#include <u.h>
#include <libc.h>

void
main(int, char*[])

{
switch(rfork(RFFDG|RFREND|RFPROC)){

case -1:
sysfatal(“fork failed");
case 0O:
execl("/bin/ls", "Is", nil);
break;
default:
waitpid();
}
exits(nil);

}

This program is like the one we sawnls , which did runls in a child process. This time it is using the actual
system callrfork . This call receives a set of flags, packaged into its single parameter using a bit-or. All the
flags forrfork have names that start witiRF’. The most important one here RFPROC It asks for a new
process, i.e., a new flow of control.

When you donot specify RFPROCthe operations you request with other flags are done to your own pro-
cess, and not to the child. When you do specify it, the other flags refer to the child.

The default behavior offork is to make a copy of the memory for the child, and to share most other
things with the parent. To do exactlyfark , we must ask for a copy of the file descriptor table including the
RFFDG(RFork File Descriptor Group). But for the memory, which is duplicated by default, other resources are
shared by default. When you give the flag for a resourcddik , you are asking for a copy. When you use a
slightly different flag, that has &€ in it (for “cleari), you are asking for a brand new, clean, resource. Because of
what we said, you can imagine thBFRENDSs asking for a another rendezvous group, but this does not really
matter by now.

Running this program executkss, as expected.

. 8.rforkls
rforkls.c
rforkls.8
8.rforkls

But let's change the call to rfork with this other one
rfork(RFCFDG|RFREND|RFPROC)

and try again
. 8.rforkls
Nothing

The explanation is thaRFCFDGprovided aclean file descriptor table (or group) to the child process.
Because standard output was not open in the childcould not print its output. Furthermore, because its stan-
dard error was closed as well, it could not even complain about it.

Now we are going to do the same, to our own process.

-135-

morkhi.c
#include <u.h>
#include <libc.h>

void

main(int, char*argvf])

{
print(*hi\n");
rfork(RFCFDG);
print(“there\n");
exits(nil);

}

This produces this output

. 8.rforkhi
o hi

’

The second message was not shown. RREFDGIag torfork asks for ecleanfile descriptor set (group). This
works like in the previous program, but this time we did not speBifPROCand therefore, the request was
applied to our own process.

7.2. Protecting from notes

The note group is shared by default when doirfgrt , because no flag is specified regarding this resource. This
means that when we run our program in a window, presBiaigtein the window will kill our process. The win-
dow system posts anterrupt note to the note group of the shell in the window, and our process is a child of
the shell, sharing its note group.

This may be an inconvenience. Suppose we are implementing a web server, that is meant to be always run-
ning. This program is meant to run in the background, because it does not need a console to read commands. The
user is expected to run our server as in

; httpd &

to be able to type more commands in the shell. However, if the user nowélggeto stop another program, the
web server is killed as well. This can be avoided by calling

rfork(RENOTEG);
in the program fohttpd . This puts the process in a new note group. We are no longer affected by notes to the

group of the shell that runs in our window. To try this, run this program commenting out the cfdtko , and
hit Delete

-136 -
moterfork.c
#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

int i;

rfork(RFNOTEG);

for(i=0;i<5; i++){
sleep(1000);
print("%d ", i);

}

print("\n“);

exits(nil);

}

The program gets killed.

. 8.noterfork
012 Delete

With the call in place, the program happily ignores us until it completes.

. 8.noterfork
012 Delete 345

Imagine this program is ounttpd server. If the user forgets to type the ampersand, it will block the shell forever

(it is waiting for the child to die). The only way to kill it is to open a new window and kill manually the process

by writing to itsctl file, as we saw before. To be nicer, our program could fork a child and let its original pro-
cess die. The shell prompt would be right back. Because we still want to protect from notes, we must get a new
note group as well.

The program, shown next, produces the same output, and convinces the shell that it should read another line
immediately after we start.

. 8.noterfork
. 012 Delete
. 345

Because the shell is reading a command line, when weDgdete it understands that we want to interrupt what
we typed and prints another prompt, but our falkggd program is still alive. ThR&RFNOTEGIag applies to our
child process, because we s&BPROGs well.

-137 -

#include <u.h>
#include <libc.h>

void
main(int, char*[])

{

int i;

switch(rfork(RFPROC|RFNOTEG)){

case 0:
for(i=0;i<5; i++){
sleep(1000);
print("%d ", i);
}
print("\n");
exits(nil);
case -1:
sysfatal("rfork: %r");
default:
break;
}
exits(nil);

7.3. Environment in shell scripts

Environment variables are shared by default. This means that if we change any environment variable, our parent
and other sibling process sharing the environment variables will be able to see our change.

Shell scripts are executed by a child shell process, and this applies to them as well. when you define a vari-
able in a shell script, the change remains in the environment variable table after the script has died. For example,
this script copies some source and documentation files to several directories for a project. It defines the
projectdir environment variable.

S5
#!/bin/rc
projectdir=/sys/src/planb
echo cp *.[ch] $projectdir/cmd
echo cp *.ms $projectdir/docs

Look what happens:

, copy
;. lc /env/projectdir
projectdir

After executingcopy , the environment variable is not yet known to our shell. The reason is that the shell caches
environment variables. Starting a new shell shows that indeed, the vapraipetdir iS in our environment.
This is also seen by listinfgnv . The file representing the variable is defined there.

echo $projectdir

;rc
; echo $projectdir
[sysl/src/planb

How can we avoid polluting the set of environment variables for the parent shell? By asking in the script for our
own copyof the parent process’ environment. This, in a C program, would be done ceébihgRFENVG)
In the shell, we can run the command

-138 -

rfork e

that achieves the same effect. The command is a builtin, understood and execttedd®/f. it is very sensible
to start most scripts doing this:

#/bin/rc
rfork ne

This creates a copy of the environment variables tab)Jeagid the name spaca)(for the process executing the
request. Because it is a copy, any change does not affect the parent. When the shell interpreting the script dies, the
copy is discarded.

7.4. Independent children

All the programs we have done, that create a child process and do not wait for it, are wrong. They did not fail, but
they were not too nice to Plan 9.

When a child process dies, Plan 9 must maintain its exit message until the parent process waits for it. How-
ever, if the parent process is never going to wait for the child, Plan 9 does not know for how long to keep the mes-
sage. Sooner or later the message will be disposed of, e.g., after the parent dies.

But if we are not going to wait, it is best to tell Plan 9 that the child is disassociated from the parent. When
the child dies, it will leave no message because no one is going to wait for it. This is achieved by specifying the
flag RFNOWAITalong withRFPROGwvhen the new, dissociated, child is being created. For example, this is the
correct version for ouchild program that usefbrk to create a child process.

#include <u.h>
#include <libc.h>

void
main(int, char*[])

switch(rfork(RFFDG|RFREND|RFPROC|RFNOWAIT))

case -1:
sysfatal("fork failedO);
case O:
print("l am the child0);
break;
default:
print("l am the parent0);
exits(nil);

}
The flagsRFFDG|RFREND|RFPROG&re equivalent to callinfprk , but this time we saiRFNOWAITas well.

7.5. Name spaces

In Plan 9, we use file names likasr/nemo . A name is just a string. It is a sequence of characters. However,
because it is a file name, we give some meaning to the string. For example, théusalmemo means:

1 Start at the file nametd, which is also known as the root directory.
2 Walk down the file tree to the file with namesr ,
3 Walk down again to the file namewmo. You have arrived.

This name specifies a path to walk through the tree of files to reach a particular file of interest, as shown in figure
7.1. What is a file? Something that you aapen , read , write , etc. As long as the file implements these oper-
ations, both you and Plan 9 are happy with it.

-139 -

386 arm usr n tmp

nemo glenda mero

Figure 7.1: A file name is a path to walk in the tree of files.

But how can'/ ”, which is just a name, refer to a file? Where does it come from? And why can a name like
/dev/icons refer to different files at different windows? The answers come from the abstraction used to provide
names for files, themame space In this case, names are for files, and we will not be saying this explicitly. It
should be clear by the context.

A name space is just a set of names that you can use (all the file paths that you might ever use in your file
tree). Somewhat confusingly, the abstraction that provides a name space is also called a name space. To add more
confusion, this is also calledreame service

The name space takes a name, i.e., a string, and translates this name into something that can be used as a file
in Plan 9. This translation is calledsolving a name It takes a name and yields a Chan, the data structure used
to represent a file within the Plan 9 kernel. Thus, you might say that resolving a name takes a string and yields a
file. The translation is done by walking through the file tree as shown above.

Because Plan 9 is a distributed system, your kernel does not have any data structure to implement files. This
may be a surprise, because in Plaev@rything is a fileor at least looks like a file. But Plan 9 does not provide
the files itself. Files are provided by other programs that may be running far away in the network, at different
machines. These programs are cafletservers

File servers implement and maintain file trees, and you may talk to them across the network, to walk their
trees and use their files. But you cannot even touch nor see the files, they are kept inside a file server program, far
away. What you can do is to talk to the file server program to ask it to do whatever you may want to do to the
files it keeps. The protocol used to talk (i.e., the language spoken) is called 9P. The section 5 of the system man-
ual documents this protocol. Any program speaking 9P can be used as a file server for Plan 9.

The conversation between Plan 9 and a file server is made throngtwark connectionIf you have not
attended to a computer networks course, you can imagine it is a phone call, with Plan 9 at one end, and the file
server at the other. In the last chapter we saw how to establish network connections, i.e., how to make calls. This
makes a network connection to the program we use as our file server:

srv tep!whale!9fs
post...
Is - /srv/tcp!whale!9fs
--rw-rw-rw- s 0 nemo nemo 0 May 23 17:44 /srv/tcp!localhost!9988

The programsrv dialed the addrestp!whale!9fs and, after establishing a connection, posted the file
descriptor for the connection &rv/tcp!whale!9fs . This file (descriptor) has a file server program that
speaks 9P at the other end of the connection.

However, to access files in the file server, we must be able to see those files in our file tree, i.e., in our name
space. Otherwise we would not be able to write paths leading to such files. We can do it. TherRlant9sys-
tem call modifies the name space and instructs jtiepto a new file when you reach a given file. The shell com-
mandmount does the same.

- 140 -

386 arm usr tmp n
nemo glenda mero " whale ...mount__ .,

Figure 7.2: The file tree reached througbp!whale!9fs is mounted atn/whale

This may seem confusing at first, but it is quite simple. For example, we may change our name space so
that when we walk through our file tree, and reach the directofyvhale , we continue our walknot at

/n/fwhale , but at the root directory of the file server reached throlsgWtcp!whale!9fs . For example,
. Ic /n/whale
. mount -c /srv/tcp!whale!9fs /n/whale
. Ic /n/whale
386 acme cron mnt tmp
LICENSE adm dist n usr
LICENSE.afpl alpha lib power
LICENSE.gpl arm Ip rc
NOTICE cfg mail sys

Before executingnount , the directory/n/whale was empty. After executing it, the original directory is still
empty, but our name space is instructed to jump to the root directory of file serisrvétp!whale!9fs :
whenever we reachn/whale . Therefore]c is not really listing/n/whale , but the root for our file server.

The nice thing is thalc is happy, because the name space keeps it unaware of where the files might be. Figure
7.2 shows howc walked the file tree, and makes it clear why it listed the root directory in the file server. The
dashed boxes and the arrow represent the mount we made.

The data structure that implements the name space is calladdbat table. It is a table that maintains
entries saying: Go from this file to this other file. This is what we just saw. After caifiognt in our example,
our mount table contains a new entry represented in the figure 7.3. The source for the translation is called the
mount point, the destination for the translation is called theunted file.

Chan for Chan for /
/niwhale at tcp'whale!9fs

Figure 7.3:New entry in mount table after mountitogp!whale!9fs at/n/whale

Do not get confused by the Chans. For your Plan 9 kernel, a Chan is just a file. It is the data structure used
to speak 9P with a file server regarding a particular file. Therefore, the figure might as welFiayfor
Iniwhale ”

Each time the name space walks one step in the file tree to resolve a name, the mount table is checked out to
see if walking should continue at a different file, as happemtaehale . If there is no such entry, the walk
continues through the file tree, as expected.

- 141 -

As a convenience, the prograsrvy can mount a 9P file server, besides dialing its address and posting the
connection file descriptor @srv . The following command line diatep!whale!9fs , like before, but it also
mounts that connection at/whale , like we did. The file created @srv is named by the second parameter.

srv tep!whale!9fs whale /n/whale
post...
; lc /srviwhale
whale

’

By convention, there is a script calldnin/9fs |, that accepts as an argument the file system to mount. It is cus-
tomized for each local Plan 9 installation. Therefore, looking into it is a good way of finding out which file
servers you have around. This command achieves the same effect of the previous command line, when used at
URJC:

9fs whale
post...

3

We haveaddednew files to our file tree, by mounting a remote file tree from a 9P file server into a directory that

we already had. The mechanism used was a translation going from one file to another. When we have two files in
our file tree, the same mechanism can be applied to translate from one to another. That is, we can ask our name
space to jump to a filalready in our treewhen we reach another that we also have in the tree. A mount for two
files already in the tree is calledinding.

The system call (and the shell command) used to do a bibihis . For example,
. bind -c /n/whale /n/other

installs a new entry in the mount table that says: When you rédother , continue aftn/whale . But note,

the names used are interpreted using the name space! Thefefategle is not the old (empty) directory it
used to be. It now refers to the root of the file server at whale. And so, listitagher yields the list for the
root directory of our file server.

, lc /n/other

386 acme cron mnt tmp
LICENSE adm dist n usr
LICENSE.afpl alpha lib power
LICENSE.gpl arm Ip rc

NOTICE cfg mail sys

Because our mount table includes now the entries shown in figure 7.4.

Chan for Chan for /
Iniwhale at tcp!whale!9fs
Chan for Chan for /
In/other at tcp!whale!9fs

Figure 7.4: Entries in the mount table after the bind frémother to/n/whale

How can we know how our name space looks like? Or, how can we know which entries are installed in our
mount table? The name space is a resource, like file descriptors, and environment variables. Each process may
have its own name space (as controlledrfoyk), although the custom is that processes in the same window
share their name spaces.

The file ns in the directory infproc for a process, lists the mount table used by that process. Each entry
is listed using a text line similar to the command used to install the entry. To obtain the entries we have installed,
we can us@rep , to print lines in oums file that contain the stringvhale :

- 142 -

; echo $pid
843
;. grep whale /proc/843/ns

mount -c #s/tcp!'whale!9fs /n/whale
mount -c #s/tcp!whale!9fs /n/other

Because lines dproc/$pid/ns are not yet ready for use as shell commands, there is a command slled
(name space) that massages them a little bit to make them prettier and ready for usensUsiadso more con-
venient because you do not need to type so much:

ns [grep whale
mount -c '#s/tcp!'whale!9fs’ /n/whale
mount -c '#s/tcp!'whale!9fs’ /n/other

The effect of a mount (or a bind) can be undone with another system call, caifedunt , or using the shell
command of the same name:

; unmount /n/whale

. Ic /n/whale

;. grep whale /proc/843/ns

mount -c #s/tcp!whale!9fs /n/other

After executingunmount , the name space no longer jumps to the root of the file serughale when reaching
/n/whale , because the entry in the mount table fmfwhale has been removed. What would happen now to
/n/other 72

. lc /n/other

386 acme cron mnt tmp
LICENSE adm dist n usr
LICENSE.afpl alpha lib power
LICENSE.gpl arm Ip rc

NOTICE cfg mail Sys

Nothing! It remains as before. We removed the entry/fdgwhale , but we did not say anything regarding the
bind for /nfother . This is simple to understand if you think that your name space, i.e., your mount table, is
just a set of translations from one file to another file. Herdother leads to the file that had the name
/In/whale . This file was the root of our file server, and not the empty directory. To undo the mount for this
directory, we know what to do:

. unmount /n/other
. Ic /n/other

’

In some cases, a single file server may provide more than one file tree. For example, the file system program used
in Plan 9,fossil , makes a snapshot of the entire file tree each day, at 5am, and archives it for the posterity. It
archives only the changes with respect to the last archive, but provides the illusion that the whole tree was
archived as it was that day.

Above, we mounted thactivefile tree provided by thdossil file server running atvhale . But we can
mount the archive instead. This can be done supplying an optional argumembdoit , that specifies the name
of the file tree that you want to mount. When you do not name a particular file tree served from the file server, its
mainfile tree is mounted. For fossil, the name of the main file tremdén/active . This command mounts the
archive (also known as tldump for our main file server, and not the active file tree (i.e., that of today):

- 143 -

;. mount /srv/tcp!whale!9fs /n/dump main/archive
;le /n/dump

2001 2002 2003 2004 2005 2006
o Is /n/dump/2004

0101

0102

0103

0104

... and may more directories. One per day, until...
1230

1231

This is very useful. You may copy files you had years ago, you may compare them to those you have today, and
you may even used them! The following commands change your name space to use the C library you were using
on May 4th, 2006:

bind /n/dump/2006/0504/386/lib/libc.a /386/lib/libc.a
bind /n/dump/2006/0504/sys/include/libc.h /sys/include/libc.h

Remember whabind does. When your compiler and linker try to ufgc.a , andlibc.h , the name space
jumps to those archived in the dump. If you suspect that a program is failing because of a recent bug in the C
library, you can check that out by compiling your program using the library you had time ago, and running it
again to see if it works this time.

The script9fs also knows how to mount the dump. So, we could have said

9fs dump
bind /n/dump/2006/0504/386/lib/libc.a /386/lib/libc.a
bind /n/dump/2006/0504/sys/include/libe.h /sys/include/libc.h

instead of mounting the dump usisgr andmount .

7.6. Local name space tricks

You must always take into account that name spaces, i.e., mount tablpeygmecessn Plan 9. Most processes

in the same window share the same name space (i.e., their mount tableynaodhia bind , or unmount done

at a window will not in general be noticed at other ones. Howeary,process may have its own name space.

This catches many users that have not been using Plan 9 for some time, when they try to change the namespace
using Acme.

Figure 7.5 shows a window running Acme. Using this acme, we executed
mkdir /tmp/dir ; bind /usr/nemo /tmp/dir

(by selecting the text and then doing a click on it with the mouse button-2). Later, we asked Acme to open
/tmp/dir , using the mouse button-3. It was empty! What a surprise! Our home directory was not empty, and
after performing théind , it seems thattmp/dir ~ was not bound to our home directory. Is Acme broken?

Acme is behaving perfectly fine. When we used the mouse button 2 to execute the command line, it created
a child process to execute the command. The child process prepared to execute the command afatlcalled
with flags RFNAMEG|RFENVG|RFFDG|RFNOTE®cme is just trying to isolate the child process. The flag
RFNAMEGaused the child process to obtain its oeopy of the name space used by Acme. As a result, any
change performed to the name space by the command you executed is unnoticed by Acme. The command starts,
changes its own name space, and dies.

To change this behavior, and ask Acme not to execute the child in its own name space, you must use
Acme’s built-in command_.ocal . If a command is prefixed bizocal , Acme understands that it must execute
the command sharing its namespace with the child process that will run the command. In this case, the child pro-
cess will just callfork(RFFDG|RFNOTEG) , but it will share the namespace and environment variables with
its parent (i.e., with Acme). Figure 7.6 shows another attempt to change the name space in Acme. The command
executed this time was

- 144 -

INewcol Kill Putall Dump Exit

New Cut Paste Snarf Sort Zerox Delcol]
fusr/nemo/ Del Snarf Get | Look]

bin/ guide mail/ ohist srcf
doc/ lib/ offline/ private/ tmp/
mkdir /tmp/dir ; bind fusr/nemo Amp/dir
/tmp/dir/ Del Snarf Get | Look]

Figure 7.5: Executing a bind on Acme does not seem to work. What is happening?
Local mkdir /tmp/dir ; bind /usr/nemo /tmp/dir

and Acme executed
mkdir /tmp/dir ; bind /usr/nemo /tmp/dir

within its own name space. Note thaical refers to the whole text executed as a command line, and not just to
the first command. This time, openitignp/dir after thebind shows the expected directory contents.

INewcol Kill Putall Dump Exit

New Cut Paste Snarf Sort Zerox Delcol]
/usr/nemo/ Del Snarf Get | Look]

bin/ guide mail/ ohist srcf
doc/ lib/ offline/ private/ tmp/S
Local mkdir /tmp/dir ; bind fusr/nemo fAmp/dir
/tmp/dir/ Del Snarf Get | Look]

bins guide mail / ohist skc/
doc/ lib/ offline/ private/ tmp/f

Figure 7.6: Commands executed withcal share their name space with Acme.

A related surprise may come from using thlember , when you change the name space after starting it.
The plumber has its own name space, the one used by the shell that execut&tigroeylib/profile ,in
case it was started from that file. When the window system starts, it takes that name space as well. However, the
window system puts each window (process) in its own name space.

- 145 -

If there are three different windows running Acme, and you plumb a file name, the file will be open by all
the Acmes running. This is simple to understand, because all the editors are sharing the/regpdtimb
When you plumb a file name, the plumber sends the message to all editors reading fredit th@ort, as we
saw.

But let's change the name space in a window, for example, by executing
9fs whale

to mount at/n/whale the file server namedvhale . Here comes the surprise. When we try to plumb
/n/whale/NOTICE , this is what we get.

. plumb /n/whale/NOTICE
; echo $status
plumb 1499: error

The plumber was unable to locdtewhale/NOTICE . After we mountedvhale on/n/whale !

But reconsider what happen. The shell running in the window is the one that moimdthle , the
plumber is running using its own name space, far before our window was brought to life. Therefore, the plumber
doesnot have anything mounted at/whale . Itis our shell the one that has something mounted on it.

To change the name space for the plumber, a nice trick is usedlliimbing file (containing the rules to
customize plumbing) usually has one specific rule for messages starting with theLstcimg . This rule asks the
plumber to execute the text afteocal in a shell started by the plumber. For example, we could do this:

. plumb 'Local 9fs whale’
plumb /n/whale/NOTICE
echo $status

’

The first command plumbkocal 9fs whale , which makes the plumber execliés whale in a shell.
Now, this shell is sharing the name space with the plumber. Thus, the command pldnaipeg:she name space
for the plumber. Afterwards, if we plumim/whale/NOTICE the plumber will see that file and there will be no
problem.

Is the problem solved? Maybe. After an editor is running at a different window, receives the plumb message
for /n/'whale/NOTICE , it will not be able to open this file, because its name space is also different. In general,
this is not a problem at all, provided that you understand how you are using your name spaces.

Another consequence of the per-process name spaces and the plumbing tool is that you can isolate an editor
regarding plumbing. Just do this:

. plumber
; acme

and the Acme will have its own set of plumbing files. Those files are supplied by the plumber that you just
started, which are different from the ones in use before executing these commands.

7.7. Device files

If you understood the discussion in the last section, this is a legitimate question: How could my name space get
anything mounted in the first place? To do a mount, you must have a file where to do the mount. That is, you need
a mount point. Initially, your machine is not even connected to the file server and you have just what is inside
your machine. You must have something that you could mouhtiaghe first place.

Besides, you must be able to use your devices to reach the file server. This includes at least the network, and
maybe the disk if you have your files stored locally in a laptop. In Plan 9, the interface for using devices is a file
tree provided by each device driver (Remember, a device driver is just the program that drives your device, and is
usually linked inside the kernel). That is to say that Plate9ice drivers are tiny file servetbat are linked to
the system.

- 146 -

You need to use the files provided by your drivers, which are their interface, if you want to use the devices.
You want to use them to reach your file server across the network. So, you have to mount these device file trees.
And we are where we started.

The answer to this chicken-and-the-egg problem is a new kind of name that we have silently omitted until
now. You have absolute paths that start walking ayou have relative paths that start walking at your current
directory, and you also hawevice pathsthat start walking at the root of the file tree of a device.

A device path starts with a has#t” sign and a character (a rune in unicode) that is unique for each device.
The file /dev/drivers lists your device drivers, along with their paths:

cat /dev/drivers

#/ root

#c cons

#P arch

#e env

#| pipe

#p proc

#M mnt

#s srv

... others omitted

For example, the pathe corresponds to the root directory of the file tree provided by the device that keeps the
environment variables. Listinge (quoted, because theis special for the shell) gets the same file list than list-
ing/env . Thatis becauske is bound atenv by convention.

. Ilc/env
" cpu init planb
0 cputype location plumbsrv
...and many others.
;e He’
> cpu init planb
0 cputype location plumbsrv

...and many others.

We have also seen that files/atoc represent the processes in the system. Those files are provided fpthe
device. To list the files for the process running the shell, we can

Ic /proc/$pid
args fd kregs note notepg proc regs
ctl fpregs mem noteid ns profile segment
...and others.

But we can also

Ic ‘#p/$pid
args fd kregs note notepg proc regs
ctl fpregs mem noteid ns profile segment
...and others.

When a device path is used, the file tree for the device is automatically mounted by the kernel. You might not
even have where to mount it! The rest of the name is resolved from there. Thus, device file names are always
available, even if you have no entries in your name space.

Where doeg come from? It comes fron#/ , that is a tiny file tree that provides mount points to let you
mount files from other places. The device is calledithet device and includes the few programs necessary to
reach your file server.

74

bin dev fd net proc Ssrv

boot env mnt net.alt root

This directory is bound td, a few other mounts and binds made, and now you have your tree. The programs
needed to do this are also in there:

- 147 -

Ic ‘#//boot’
boot factotum fossil ipconfig

7.8. Unions

The mounts (and binds) we made so far have the effemmiacingthe mount point file with the mounted file.
This is what a mount table entry does. However, you can also add a mounted file to the mount point. To see how
this works in a controlled way, let's create a few files.

. mkdir adir other
. touch adir/a adir/b adir/c
;. touch other/a other/x other/y
o lc adir
a b (o
If we bind other into adir , we know what happens. From now @adir refers toother .

. bind other adir
. Ic adir
a X y

After undoing the effect of the bind, to leawsir undisturbed, we do another bind. But this time, we bind
other intoadir afterwhat it previously had, by using tha flag for bind . And this is what we get:

. bind -a other adir
Ic adir
a a b c X y

You can see how the file that used toddir now leads to ainion of both the oldadir andother . Its con-
tents appear to be the union of the contents for both directories. Because there are two files hangedt the
old adir and another atther , we see that file name twice. Furthermore, look what happens here:

;. rm adir/b

. Ic adir

a a c X y
;. rm adirly

o lc adir

a a c X

. Ic other

a X

Removingadir/b removed thé file from the originaladir . And removing the fileadir’ly = removed the file
y, and of course the file is no longerather either. Let's continue the game:

. echo hola >other/a
. cat other/a
hola

cat adir/a

3

We modify the filea in other , and write something on it. Readimgher/a vyields the expected result. How-
ever,adir/a s still an empty file. Because we bounther after, using the-a flag for bind , the namea is
found in the oldadir , which is before the file with the same nameoiiher . Therefore, although we see twice
a, we can only use the one that is first found.

. rm adir/a

. Ic adir

a c X
Ic other

a X

Removingadir/a removes the fila from the originaladir . But there is another file aither nameda, and

- 148 -

we still see that name. Because we bowtiter into adir , after what it previously had, theemove system
call finds first the namedir/a at the oldadir , and that is the one removed.

What happens to our name space? How can it be what we saw above? The answer is that you can bind (or
mount) more than one file for the same mount point. The mount table entry added by the bind we made in this
section is shown in figure 7.7.

Chan for Chan for Chan for
adir adir other

Figure 7.7: A union mount. The mount entry afbénd -a other adir

This entry has a mount poiradir . When that file is reached, the name space jumps and continues walk-
ing at the mounted file. However, here we haws mounted files for this entry. When we bouwnther after
what was initially atadir , Plan 9 addedcdir as a file mounted here, and thether was linked after as
another mounted file. This can be seen if you nsdo look for entries referring tadir

; ns/[grep adir
bind /tmp/adir /tmp/adir
bind -a /tmp/other /tmp/adir

When a mount entry is a union, and has several mounted files, the name space tries each one in order, until one
works for the name being resolved. When reading the directdlyf the feasible targets are read. Note that
unions only make sense when the files are directories. By the way, to mount dvdfimethe previous contents

of a union, use the flagh for either program.

Unions can be confusing, and when you create files you want to be sure about where in the union are you
creating your files. To help, the flag can be supplied to eithdrind or mount to allow you to create files in
the file tree being mounted. If you do not supply this flag, you are not allowed to create files in there. When trying
to create a file in a union, the first file in the union mounted withis the one used.

7.9. Changing the name space

To adjust the name space in a C program, two system calls are available. They are similar to the shell commands
used above, which just call these functions according to their command line arguments

;. sig bind mount
int bind(char *name, char *old, int flag)
int mount(int fd, int afd, char *old, int flag, char *aname)

The system call used by thmount command we saw above mount . It takes a file descriptorfd , used to

reach the file server to mount. It must be open for reading and writing, because a 9P conversation will go through
it. The descriptor is usually a pipe or a network connection, and must have a 9P speaker at the other end of the
pipe. To be on the safe side, Plan 9 clo&ksfor your process after the mount has been done. This prevents you
from reading and writing that descriptor, which would disrupt the 9P conversation between Plan 9 and the file
server.

After the call, theold file has the file server reached throufgh mounted on it. The parametaname cor-
responds to the optional argument for teunt command that names a particular file tree to be mounted. To
mount the server’s main file free, supply an empty (not null!) string.

The options given to the shell commambunt are specified here using a bit-or of flags. You may use one
of the integer constantsiREPL. MBEFOREand MAFTER Using MREPLasks forreplacing the old file (the
mount point) with the new file tree. Using instesfBEFOREsksmount to mount the new file trebeforethe
previous contents for the old file (equivalent-to in the shell command). Using AFTERNstead asks for mount-
ing the file treeafter the old one (like giving aa to the shell command). To allow creation of files in the
mounted tree, do a bit-or of the integer consti@REATERvith any other flag.

- 149 -

This program mounts the main file tree of our file serveinatvhale , and the archive d@b/dump .

whale.c
#include <u.h>
#include <libc.h>
#include <auth.h> /I for amount
void
main(int, char*[])

{
int fd;

fd = open("/srvi/tcp!whale!9fs", ORDWR);

if (fd < 0)
sysfatal("can’t open /srv/tcp!whale!9fs: %r");

if (amount(fd, "/n/whale”, MREPL|IMCREATE, ") < 0)
sysfatal("mount: %r");

if (amount(fd, "/n/dump", MREPL, "main/archive") < 0)
sysfatal("mount: %r");

exits(nil);

Because the dump cannot be modified, we do notM&&REATHor it, it would make no sense to try to create
files in the (read-only) archive. Running this program is equivalent to executing

. mount -c /srv/tcp!whale!9fs /n/whale
. mount /srv/tcp!whale!9fs /n/dump main/archive

As you could see, the program cadlmmount and notmount. The functionamount is similar to mount, but

takes care ofuthenticationi.e., convincing the file server that we are who we say we are. This is necessary or the
file server would not allow attaching to its file tree with the access rights granted to our user namanddtert
convinces the file server, it callmount supplying anauthentication file descriptoas the value for thenount
parameteafd . The other parameters farount are just those we gave tomount .

The other system calhind , is used in the same way. Its flags are the same used for mount. However,
unlike mount, it receives a filaame instead of a file descriptor. As you could expect after having using the shell
commandbind .

7.10. Using names

We have seen that the shell has an environment variphlb, , to determine where to search for commands.
There are several interesting things to note about this. First, there are only two directories where to search.

;. echo $path
/bin

This is really amazing if you compare this with the list of directories in the PATH in other systems, which tends
to be much larger. For example, this is the variable used in a UNIX system we have around:

$ echo $PATH
/bin:/usr/bin:/shin:/usr/shin:/usr/local/bin:/opt/bin:.
$

In UNIX, the PATHvariable has the same name in upper-case, and directories are separated by colons instead of
space.

Also, how do you get abin only those binaries for the architecture you are using?

After your machine has completed its boot process, and mounted the file server, it runs a program called
init . This program initializes a new namespace for your terminal and/hingc within such namespace,
to execute commands ific/bin/termrc , that start system services necessary for using the system. The
namespace is initialized by a call to the functioewns,

- 150 -

sig newns
int newns(char *user, char *nsfile);

which reads a description for an entire namespace from anfifidle , and builds a new namespace for a given
user that matches such description. This is is an excerpt from the/lfdthamespace , which is the
nsfile used by default:

root
mount -aC #s/boot /root $rootspec
bind -a /root /

kernel devices

bind #c /dev

bind #d /fd

bind -c #e /env

bind #p /proc

bind -c #s /srv
...several other binds...

standard bin
bind /$cputype/bin /bin
bind -a /rc/bin /bin

User mounts

bind -c /usr/$user/tmp /tmp

bind -bc /usr/$user/bin/$cputype /bin
bind -bc /usr/$user/bin/rc /bin

cd /usr/$user

As you can see, a namespace file for use wethvns contains lines similar to shell commands used to adjust the
namespace, that are like the onegprnoc/*/ns files. The file #s/boot is a connection to the file server
used to boot the machine. This is what you findsat/boot | after the line

bind -c #s /srv

in the namespace file has been processed. Ignoring some details, you can see how this file server is mounted at
/root , and then this directory is added/to Both directories come from your root devig#,, which is always
available. The dance arouh®ot and/ addsthe root of the file server to those files alreadyrioot

The next few lines bind device driver file trees at conventional places. For exatiapls,the consdriver,
which is bound atdev and provides files likedev/null , /dev/time , and other common files for the
machine. Also#d provides the file interface for your file descriptors, and is boundfcat as expected. The
same is done for other drivers.

Now look at the sections marked atandard bin anduser mounts They answer our question regarding
/bin

The programinit defined several environment variables. For exam$leser holds your user name,
$sysname your machine name, arfthome your home directory. It also defined another varial¥leputype
which holds the name for the architecture it was compiled for. That is, for the architecture you are using now!
Therefore,

bind /$cputype/bin /bin
bind -a /rc/bin /bin

binds/386/bin into/bin , on a PC. All the binaries compiled for a 386 are now available at their conventional
place/bin . Besides, portable Rc scripts found@&tbin , which can be interpreted bg at any architecture,

are added tdbin , after the binaries just bound. You have now a compleite , all set for using. It that was not
enough, the lines

bind -bc /usr/$user/bin/$cputype /bin
bind -bc /usr/$user/bin/rc /bin

add your own binaries and Rc scripts, that are storeli@dB86 (in this case) andin/rc in your home

-151 -

directory.

If you want to add, or remove, more binaries/lain , you can just us&ind , to customizebin as you
please. There is no need for a lon§path , becausébin may have just what you want. And you always know
where your binaries are, i.e., just look/Bin

Another detail that you see is that the directéimp is indeed/usr/$user/tmp . You have your own
directory for temporary files, although all programs create theftngt , by convention. Even if the file system is
being shared by multiple users, each user has its fmvp , to avoid disturbing others, and to avoid being dis-
turbed.

We are going to continue showing how to use the name space to do a variety of things. Nevertheless, if you
want to read a nice introduction to using name spaces for doing things, refer to [3].

7.11. Sand-boxing

Being able to customize the name space for a particular process is a very powerful tool. For example, the window
system does a

rfork(RENAMEG)

to make a duplicate of the namespace it runs in, for each window (actually, for each shell that is started for a new
window). The shell script

. window

creates a new Rio window, with a new shell on it. This shell is provided with its own copy of the namespace, cus-
tomized to use the console, mouse, and screen just for that window. These are the commands:

rfork ne
mount /srv/rio.nemo.39 /mnt/wsys
bind -b /mnt/wsys /dev

Mounting the file server for the window system creates a new window, and binding its file tfégevatreplaces
the files that represent the console. All the programs are unaware of this.

Many other things can be done. To freeze the time in your system, just provide a file interface that never
changes:

cp /dev/time /dev/bintime /tmp/
bind /tmp/time /dev/time
;. bind /tmp/bintime /dev/bintime

One interesting use of namespaces is in creating sandboxes for processes tosamdbAx is a container of

some kind that isolates a process to prevent it from doing any damage, like when you do a sand box in the beach
to contain the water. This program creates a sandbox to run some code inside.rewsasto build a whole

new namespace according to a file given as a parameter. Because of thafcal(®@FNOMNT) that follows,

the process will not be allowed to mount any other file tree. It may access just those files that are in the namespace
described in the file. That is a very nice sand box.

-152 -

JOX.C
#include <u.h>
#include <libc.h>
#include <auth.h> /Il for newns
void
main(int argc, char* argv[])
{

char* user;

if (argc = 2){
fprint(2, "usage: %s ns prog\n“, argv0);
sysfatal("usage");

}

switch(rfork(RFPROC|RFNAMEG)X{

case -1:

sysfatal(“fork: %r");
default:

waitpid();

exits(nil);
case 0O:

user = getuser();

if (newns(user, argv[1]) < 0)
sysfatal("newns: %r");

rfork(RFNOMNT);

execl(argv[1], argv[1], nil);

sysfatal("exec: %r");

The call togetuser returns a string with the user name. We have already seen all other calls used in this pro-
gram. The program can be used like in

;. 8.box sandbox /bin/rc

Wheresandbox is a file similar to/lib/namespace , but with mounts and binds appropriate for a sandbox.

7.12. Distributed computing revisited

In the last chapter, we learned about CPU servers and connected to one of them to execute commands. But there is
one interesting thing about that kind of connection. Indeed, you have already seen it, but perhaps it went unno-
ticed. This thing may become more visible if you connect to a cpu server and exiecutelThe result is shown
in figure 7.8.

;. cpu

cpu% rio

...and you get a whole window system in your window!

You just started the window system, but it is running at the CPU server, and not at your terminal. However, it is
using your mouse, your keyboard, and your screen to do its job! Not exactly, indeed, it is using the virtual mouse,
keyboard, and screen provided by the Rio in your terminal for the window you used to connect to the CPU server.
Is it magic?

The answer may come if you take a look at the name space used by a shell obtained by connecting to a CPU
server. This shell has a namespace that hasmtfterm the whole namespace you had available in the window
where you did rurcpu. Furthermore, some of the files ahnt/term/dev were bound tddev . Therefore,
many of the devices used by the shell (or any other process) in the CPU server do not come from the CPU server
itself. They come from your terminal!

The namespace at your terminal includes files li#ev/cons , /dev/idraw , and/dev/mouse . This
name space was initialized by a process that catied@ns using/lib/namespace , as we saw in another
example before, and then perhaps you customized it further by doing mounts or binds in your profile. The same

- 153 -

alboran

|

dquamar

"

Figure 7.8:Rio run in a Rio window. The inner rio runs at a CPU server, not at your terminal.

happens for the shell started for you in the CPU server. It gets a namespace initialized by anealhsy and
perhaps by your profile. However, the program initializing a namespace for you in the CPU server mounted at
/mnt/term the name space exported from your terminal, and made a few binds to athustto use your
terminal’s devices instead.

This includes the files we mentioned above that are the interface for your console, for drawing graphics, and
for using the mouse. At least, they are within your terminal’s window. At a different window, you know that rio
provides different files that represent the interface for the console, graphics, and mouse for that other window.

Now the question remains. How can a namespace be exported? Change the question. How can a namespace
be imported? To import anything into your namespace, you must mount a 9P file server. Therefore, if your
namespace is exported using a file server, it can be imported. It turns out that there is a program for doing just
that. Well, there are two.

The real work is done byexportfs . This program uses the venerable cailzen, close , read ,
write , etc. to access your namespace, and exports it by speaking 9P through a network connection, like any
other file server. When a 9P client ekportfs asks this program to return the result of reading a file, it reads
the file and replies. When a 9P client askgortfs to write into a file, by sending a 9P write request to it, the
program uses therite system call to write to the file. The effect is that for anyone mounting the file tree pro-
vided byexportfs , that file tree is exactly the same than the one in effect in the namespaceexiperds
runs.

The second program that can be used to export a namegpafs, , is just a convenience wrapper, that
callsexportfs in a way that is simpler to use from the shell. It receives the name for a file to be created at
/srv , that when mounted, grants access to the file tree rooted at the directory given as the second argument.

To see thasrvfs |, i.e., exportfs , is indeed exporting a namespace, we can rearrange a little bit our
namespace, export a part of it, and see how after mounting it we gain access to the rearranged file tree that we see,
and not the real one from the file server.

- 154 -

mkdir /tmp/exported /tmp/exported/doc /tmp/exported/src
bind $home/doc /tmp/exported/doc
bind $home/src /tmp/exported/src

srvfs x /tmp/exported

mount -c /srv/x /n/imported
. le /n/imported
doc src
; lc /n/imported/src
9 gs misc
UGrad lang 0s
bbug limbo prj
chem mem sh

A nice example of a use for this program can be found irsthréf4) manual page.

;o cpu
cpu% srvfs procs /mnt/term/proc
cpu%
This posts afsrv/procs , in the CPU server, a file descriptor that can be used to mount the file tree seen at
/mnt/term/proc in the namespace whesevfs is executed. That is, thgproc file tree at the terminal

used to run thepu command. Therefore, mountirgrv/procs in the CPU server permits obtaining access
to the/proc interface for the user’s terminal.

cpu% mount -c /srv/proc /n/procs
cpu% Ic /n/procs

20 257 30 33 367 662
10 21 259 300 330 37 663
11 213 26 305 334 38 669
111 214 260 306 335 387 674
12 22 265 310 34 389 676

13 23 266 311 346 39 677

3

Remember, because almost every resource looks like a file, you can now export whatever resource you may want.

Indeed, we do not even need to ugl to connect to the CPU server to mount the expofpedc , we can
importthe directory'srv from the CPU server, and mount it at our terminal:

. import $cpu /srv /n/cpusrv
;. mount -c /n/cpusrv/proc /n/procs

The programimport is the counterpart aéxportfs . It imports a part of a remote namespace into our names-
pace. What it does is to connect to the remote system, and staxrpantfs there, to export file tree of inter-
est. And then, it mounts the now exported file tree in our namespace.

For example, the file nam#S is the root directory for the storage device driver. This driver provides one
directory per hard disk, which contains one file per partition in the disk. It doesn’t really matter how a disk inter-
face looks like, or how a disk is managed in Plan 9. What matters is that this is the way to get access to the disks
in your system, for example, to format them. My terminal has two hard disks and a DVD reader.

; lc %S’

sdCO sdC1 sdDO sdctl
They are nameddCO0, sdC1, andsdDO0. BecausetS is usually added tédev usingbind , some of these files
are likely to show up in youfdev .

If you want to format a hard disk found at a remote machine, you may do so from your terminal. Imagine
the disk is at your CPU server, you might do what follows.

- 155 -

; import $cpu #S’ /n/cpudisks
. lc /n/epudisks
sdCO sdC1 sdDO sdD1 sdctl

’

If you do not have a floppy reader unit at your terminals (which is the common case today for laptops), there is no
need to worry. You can impo#f , the root directory for the floppy disk driver, from another machine. And then
use the scrip&: , which mounts the DOS formatted floppy of your terminalrda .

; Import -bc barracuda #f' /dev
.

;. cp afile /n/a/afile. txt

;. unmount /n/a

As you could seeimport admits the same familiar options farount andbind , to mount the imported tree
before, after, or replacing part of your namespace.

This applies to the the serial port, the audio card, and any other resource that any other machine might have,
provided it is represented as a file. As a final example, firewalls are machines that are connected to two different
networks, one protected network for local use, and the internet. In many cases, connecting directly to the internet
from the local network is forbidden, to create a firewall for viruses and malicious programs. Nevertheless, if the
firewall network for connecting to the Internet/iset.alt , at the firewall machine, this grants your machine
direct connection to the internet as well (at the price of some danger).

;. import -c firewall /net.alt /net

Problems
1 Add the line
rfork(RFNAMEG);

to the programwhale , before doing the calls tamount, and see what happens when you execute it.
Explain.

Enumerate the file servers available at your local Plan 9 site.

Print down the name space used by the plumber in your session.
Reproduce your name space at a different machine.

Make your system believe that it has an extra CD unit installed. Use it.
Put any server you have implemented in a sand-box. Try to break it.

D Ok WD

8 — Using the Shell

8.1. Programs are tools

In Plan 9, programs are tools that can be combined to perform very complex tasks. In most other systems, the
same applies, although it tends to be a little more complex. The idea is inherited from UNIX, each program is
meant to perform a single task, and perform it well.

But that does not prevent you to combine existing programs to do a wide variety of things. In general, when
there is a new job to be done, these are your options, listed from the easiest one to the hardest one:

1 Find a program that does the job. It is utterly important to look at the manual before doing anything. In
many cases, there will be a program that does what we want to do. This also applies when programming in
C, there are many functions in the library that may greatly simplify your programs.

2 Combine some programs to achieve the desired effect. This is where the shell gets relevance. The shell is the
programming language you use to combine the programs you have in a simple way. Knowing how to use it
may relieve you from your last resort.

3 The last resort is to write your own program for doing the task you are considering. Although the libraries
may prove invaluable as helpers, this requires much more time, specially for debugging and testing.

To be able to use shell effectively, it helps to follow conventions that may be useful for automating certain tasks
by using simple shell programs. For example, writing each C function using the style

void

func(...args...)

}

permits using this command line to find where functfon is defined:

;. grep-n ool(’ *.c

By convention, we declared functions by writing their names at the beginning of a new line, immediately fol-
lowed by the argument list. As a result, we can getp to search for lines that have a certain name at the begin-
ning of line, followed by an open parenthesis. And that helps to quickly locate where a function is defined.

The shell is very good for processing text files, and even more if the data has certain regularities that you
may exploit. The shell provides a full programming language where commands are to be used as elementary state-
ments, and data is handled in most cases as plain text.

In this chapter we will see how to use as a programming language, but no one is going to help you if you
don’t help yourself in the first place. Machines love regular structures, so it is better to try to do the same thing in
the same way everywhere. If it can be done in a way that can simplify your job, much better.

Plan 9 is a nice example of this is practice. Because all the resources are accessed using the same interface (¢
file interface), all the programs that know how to do particular things to files can be applied for all the resources
in the system. If many different interfaces were used instead, you would need many different tools for doing the
same operation to the many different resources you find in the computer.

This explains the popularity of XML and other similar data representations, which are attempts to provide a
common interface for operating on many different resources. But the idea is just the same.

8.2. Lists

The shell includes lists as its primary data structure, indeed its only data structure. This data type is there to make
it easier for you to write shell programs. Because shell variables are just environment variables, lists are stored as
strings, the only value a environment variable may have. This is the famous abc list:

- 158 -

x=(@abc)
. echo $x
abc

Itis just syntax. It would be the same if we had typed any of the following:
; x=(a(bc))

. echo $x
abc
x=(((a) (b)) (c))
. echo $x
abc

It does not matter how you nest the same values using multiple parenthesis. All of them will be the same, namely,
just(abc) . Whatis the actual value of the environment variabled@rWe can see it.

;. xd -c /envix
0000000 a00 b00 coO00
0000006

Just the three strings, b, andc. Rc follows the C convention for terminating a string, and separates all the val-
ues in the list with a null byte. This happens even for environment variables that are a list of a single word.

T X=3

. xd -c /envix
0000000 300
0000002

The implementation for the library functiogetenv replaces the null bytes with spaces, and that is why a
getenv for anrc list would return the words in the list separated by white space. This is not harmful for C, as a
0 would be because 0 is used to terminate a string in C. And it is what you expect after using the variable in the
shell.

The variable holding the arguments for the shell interpreting a shell script is also a list. The only difference
is that the shell initializes the environment variable $6r automatically, with the list for the arguments supplied
to it, most likely, by giving the arguments to a shell script.

Given a variable, we can know its length. For any variable, the shell defines another one to report its length.
For example,

. x=hola
echo $#x

i x=(abc)
. echo $#x

The first variable was a list with just one word in it. As a result, this is the way to print the number of arguments
given to a shell script,

echo $#*

because that is the length$f, which is a list with the arguments (stored as an environment variable).

To access the-th element of a list, you can u§var(n) . However, to access theth argument in a shell
script you are expected to u$a. An example for our popular abc list follows:

echo $x(2)

; echo $x(1)
a

Lists permit doing funny things. For example, there is a concatenation operator that is best shown by example.

- 159 -

i x=(abc)
» y=(123)
echo $x"$y
al b2 c3

The” operator, used in this way, is useful to build expressions by building separate parts (e.g, prefixes and suf-
fixes), and then combining them. For example, we could write a script to adjust permissions that might set a vari-
ableops to decide if we should add or remove a permission, and then a vapahies to list the involved per-
missions. Of course in this case it would be easier to write the result by hand. But, if we want to generate each
part separately, now we can:

; ops=(+-+)

;. perms=(r w x)

echo $ops’$perms afile
+r -w +x afile

Note that concatenating two variables of length 1 (i.e., with a single word each) is a particular case of what we
have just seen. Because this is very common, the shell allows you to omit thigich is how you would do the
same thing when using a UNIX shell. In the example below, concatenating both variagkesilythe same than
it would have been writing1 instead.

; X=a

;o y=1

; echo $x"\$y

al

echo xy
al

’

A powerful use for this operator is concatenating a list with another one that has a single element. It saves a lot of
typing. Several examples follow. We useho in all of them to let you see the outcome.

;. files=(stack run cp)
; echo $files”.c
stack.c run.c cp.c
echo $files™.h
stack.h run.h cp.h
; rm $files”.8
;. echo (8 5)".out
8.out 5.out
rm (8 5)".out

Another example. These two lines are equivalent:

;. cp (/source/dir /dest/dir)"Va/very/long/path
. cp /source/dir/a/very/long/path /dest/dir/a/very/long/path

And of course, we can use variables here:

. src=/source/dir
. dst=/dest/dir
. cp ($src $dst)Va/very/long/path

Concatenation of lists that do not have the same number of elements and do not distribute, because none of them
has a single element, is illegal in . Concatenation of an empty list is also forbidden, as a particular case of this
rule.

- 160 -

ops=(+- +)
;. perms=(w x)
. echo $ops"$perms
rc: mismatched list lengths in concatenation
;o X=()
; echo (abc)$x
rc: null list in concatenation

In some cases it is useful to use the value of a variable as a single string, even if the variable contains a list with
several strings. This can be done by usirtj abefore the variable name. Note that this may be used to concate-
nate a variable that might be an empty list, because we translate the variable contents to a single word, which hap-
pens to be empty.

i x=(abc)

. echo $x"1
alblcl

. echo $"x"1
abcl

v X=()

;. echo (abc)$'x
abc

’

There are two slightly different values that can be used to represent a null variable. One is the empty string, and
the other one is the empty list. Here they are, in that order.

; X:I]

s Y=0

echo $x
. echo $y

;. xd -c /envix
0000000 00
0000001

. xd -c /envly
0000000
0000000

;. echo $#x $#y
10

Both values yield a null string when used, yet they are different. An empty string is a list with just the empty
string. When expanded lgetenv in a C program, or by using in the shell, the result is the empty string. How-

ever, its length is 1 because the list has one (empty) string. For an empty list, the length is zero. In general, it is
common to use the empty list as the nil value for environment variables.

8.3. Simple things

We are now prepared to start doing useful things. To make a start, we want to write a couple of shell scripts to
convert from decimal to hexadecimal and vice-versa. We should start most scripts with

rfork e

to avoid modifying the set of environment variables in the calling shell.

The first thing needed is a program to perform arithmetic calculations. The shell kmaihisigabout num-
bers, not to mention arithmetic. The shell knows how to combine commands together to do useful work. There-
fore, we need a program to do arithmetic if we want to do arithmetic with the shell. We may type numbers, but for
shell, they would be just strings. Lists of strings indeed. Let’s search for that program.

-161 -

;. lookman arithmetic expression
man 1 2c # 2c(1)

man 1 awk # awk(1)

man 1 bc # be(1)

man 1 hoc # hoc(1)

man 1 test # test(1)

man 8 prep # prep(8)

There are several programs shown in this list that we might use to do arithmetic. In ghoer#d,a very power-
ful interactive floating point calculation language. It is very useful to compute arbitrary expressions, either by sup-
plying them through its standard input or by using-gs option, which accepts as an argument an expression to
evaluate.

i hoc-e2+2

4

;. echo2+2|[hoc

4

Hoc can do very complex arithmetic. It is a full language, using a syntax similar to that of C. It reads expressions,
evaluates them, and prints the results. The program includes predefined variables for famous constants, with
namesE, Pl , PHI, etc., and you can define your own, using the assignment. For example,

;. hoc

r=3.2

Pl *r2
32.16990877276
control-d

’

defines a value for the radius of a circle, and computes the value for its area.

But to do the task we have at hand, it might be more appropriate another calculation programbealled
This is program is also a language for doing arithmetic. The syntax is also similar to C, and it even allows to
define functions (like Hoc). Like before, this tool accepts expressions as the input. It evaluates them and prints the
results. The nice thing about this program is that it has a simple way of changing the numeric base used for input
and output. Changing the value for the variablease changes the base used for output of numeric values.
Changing the value for the variablease does the same for the input. It seems to be just the tool. Here is a ses-
sion converting some decimal numbers to hexadecimal.

. be
obase=16
10

a

20

14

16

10

To print a decimal value in hexadecimal, we can wotease=16 and the value as input fdrc. That would

print the desired output. There are several ways of doing this. In any case, we must send several statements as
input forbc. One of them changes the output base, the other prints the desired value. What we can do is to sepa-
rate bothbc statements with & ”, and useecho to send them to the standard inputoaf.

; echo 'obase=16; 512'[bc
200

We had to quote the whole command line fmr because there are at least two characters with special meaning
for rc , and we want the string to be echoed verbatim. This can be packaged in a shell script as follows, concate-
nating$1l to the rest of the command foc.

-162 -

d2hn
#!/bin/rc
echo 'obase=16; '$1 |bc

Although we might have inserted’abefore$1, rc is kind enough to insert one for free for us. You will get used
to this pretty quickly. We can now use the resulting script, after giving it execute permission.

;. chmod +x d2h
;. d2h 32
20

We might like to write each input line fdyc using a separate line in the script, to improve readability. The com-
poundbc statement that we have used may become hard to read if we need to add more things to it. It would be
nice to be able to use a differeatho for each different command sent bz, and we can do so. However,
because the output ftwoth echoes must be sent to the standard inputogfwe must group them. This is done in

rc by placing both commands inside brackets. We must still quote the first commahd fbecause the equal

sign is special forc . The resulting script can be used like the one above, but this one is easier to read.

#!/bin/rc

{ echo 'obase=16’
echo $1

}| bc

Here, the shell executes the twoho es but handles the two of them as it they were just one command, regarding
the redirection of standard output. This grouping construct permits using several commands wherever you may
type a single command. For example,

. { sleep 3600 ; echo time to leave! } &
executesboth sleep and echo in the background. Each command will be executed one after another, as
expected. The result is that in one hour we will see a message in the console reminding that we should be leaving.

How do we implemented a script, calle@d, to do the opposite conversion? That is, to convert from hex-
adecimal to decimal. We might do a similar thing.

#!/bin/rc

{ echo 'ibase=16’
echo $1

}| bc

But this has problems!

;. h2d abc

syntax error on line 1, teletype
syntax error on line 1, teletype
0

The problem is thabbc expects hexadecimal digits frofto F to be upper-case letters. Before sending the input

to bc, we would better convert our numbers to upper-case, just in case. There is a program that may help. The
programtr (translate) translates characters. It reads its input files (or standard input), performs its simple transla-
tions, and writes the result to the output. The program is very useful for doing simple character transformations
on the input, like replacing certain characters with other ones, or removing them. Some examples follow.

i echo x10+y20+z30 [tr x y
y10+y20+230

;. echo x10+y20+z30 [tr xy z
z10+z20+z30

;. echo x10+y20+z30 [tr a-z A-Z
X10+Y20+230

; echo x10+y20+z30 [tr -d a-z
10+20+30

- 163 -

The first argument states which characters are to be translated, the second argument specifies to which ones they
must be translated. As you can see, you cantasho translate several different characters into a single one.
When many characters are the source or the target for the translation, and they are contiguous, a range may be
specified by separating the initial and final character with a dash. Underdlaty removes the characters from
the input read, before copying the data to the output. So, how could we translate a dash to other character? Simple.
; echoa-b-c|tr-X
aXbXc

This may be a problem we need to translate some other character, beacawselld get confused thinking that
the character is an option.

;. echo a-b-c [tr-a XA

tr: bad option
But this can be fixed reversing the order for characters in the argument.

; echo a-b-c [tr a- AX

AXbXc

Now we can get back to oun2d tool, and modify it to supply just upper-case hexadecimal digitscto

h2dn
#!/bin/rc
{ echo 'ibase=16’
echo print $1 | tr a-f A-F
}be

The newh2d version works as we could expect, even when we use lower-case hexadecimal digits.

;. h2d abc
2748

Does it pay to writeh2d andd2h? Isn't it a lot more convenient for you to use your desktop calculator? For
converting just one or two numbers, it might be. For converting a dozen or more, for sure, it pays to write the
script. The nice thing about having one program to do the work is that we can now use the shell to automate
things, and let the machine work for us.

8.4. Real programs

Our program$2d andd2h are useful, for a casual use. To use them as building blocks for doing more complex
things, more work is needed. Imagine you need to declare an array in C, and initialize it, to use the array for trans-
lating small integers to their hexadecimal representation.

char* d2h[] ={
HOXOOI',
"0x11",
"OXfF"
h

To obtain a printable string for a integerin the range 0-255 you can use jui2h[i] . Would you write that
declaration by hand? No. The machine can do the work. What we need is a command that writes the first 256 val-
ues in hexadecimal, and adjust the output text a little bit before copying it to your editor.

We could changed2h to accept more than one argument and do its worlafothe numbers given as argu-
ment. Callingd2h with all the numbers from 0 to 255 would get us close to obtaining an initializer for the array.
But first things first. We need to iterate through all the command line arguments in our script. Rc incfodes a
construct that can be used for that. It takes a variable name and a list, and executes the command in the body once
for each word in the list. On each pass, the variable takes the value of the corresponding word. This is an example,
usingx as the variable angh b ¢) as the list.

- 164 -

for (xinabc)
;i echo $x
a
b
c

Note how the prompt changed after typing tbe line, rc wanted more input: a command for the body. To use
more than one command in the body, we may use the brackets as before, to group them. First attempt:

for (num in 10 20 30) {
echo ‘obase=16’

;. echo $num

no}

obase=16

10

obase=16

20

obase=16

30
It is useful to try the commands before using them, to see what really happengorTHeop gave three passes,
as expected. Each timgnum kept the value for the corresponding string in the li€); 20, and30. Remember,
these are strings! The shell does not know they mean numbers to you. Sébitieg in each pass seems to be a

waste. We will do it just once, before iterating through the numbers. The numbers are taken from the arguments
given to the script, which are kept$t .

d2h2

#!/bin/rc
rfork e
{

echo 'obase=16’

for (num in $*)

echo $num

}bc

Now we have a better program. It can be used as follows.

dzh 10 20 40
a
14
28

We still have the problem of supplying the whole argument list, a total of 256 numbers. It happens that another
program,seq, (sequences) knows how to write numbers in sequence. It can do much more. It knows how to print
numbers obtained by iterating between two numbers, using a certain step.

seq5 froml1to5

GarrwWONEL

seq1210 from 1 to 10 step 2

TONOOITWE T

What we need is to be able to use the outpuderf as an argument list fai2h. We can do so! Using th§ ...}

- 165 -

construct that we saw while discussing how to use pipes. We can do now what we wanted.

d2h {seq 0 255}
0
1
...and many other numbers up to...
fd

fe
ff

That was nice. However, most programs that accept arguments, work with their standard input when no argument
is given. If we do the same @2h, we increase the opportunities to reuse it for other tasks. The idea is simple, we
must check if we have arguments. If there are some, we proceed as before. Otherwise, we can read the arguments
usingcat , and then proceed as before. We need a way to decide what to do, and we need to be able to compare
things. Rc provides both things.

The constructionf takes a command as an argument (within parenthesis). If the command’s exit status is
all right (i.e., the empty string), the body is executed. Otherwise, the body is not executed. This is the dfassical
then but using a command as the condition (which makes sense for a shell), and one command (or a group of
them) as a body.

;. Iif(Is -d /tmp) echo /tmp is there!
tmp
/tmp is there!

’

if (Is -d /blah) echo blah is there
Is: /blah: '/blah’ file does not exist

In the first caserc executeds -d /tmp . This command printed the first output line, and, because its exit
status was the empty string, it was takenra® regarding the condition for thi#é . Thereforeecho was exe-
cuted and it printed the second line. In the second dased /blah failed, andls complained to its stan-
dard error. The body command for tlie was not executed.

It can be a burden to see the output for commands that we use as conditidfhsf@nd it may be wise to

send the command outputidev/null , including its standard error.
. if(Is -d /tmp >/dev/null >[2=1]) echo is there
is there

. if(Is -d /blah >/dev/null >[2=1]) echo is there
Once we know how to decide, how can we compare strings?~Ttygerator inrc compares one string to other

oned, and yields an exit status meaning true, or success, when the compare succeeds, and one meaning false oth-
erwise.

~11
echo $status

o ~12
. echo $status
no match
if (~ 1 1) echo this works
this works

So, the plan is as follows. B#* (the number of arguments for our script) is zero, we must do something else.
Otherwise, we must execute our previous commands in the script. Before implementing it, we are going to try just
to do different things depending on the number of arguments. But we need an else! This is done by using the con-
structif not after anif . If the command representing the condition foritinfails, the followingif not

executes its body.

' We will see how~ is comparing a string to expressions, not just to strings.

- 166 -

@argasn
#!/bin/rc
if (~ $#* 0)
echo no arguments
if not
echo got some arguments: $*

And we can try it.

;args
no arguments

; args12

got some arguments: 1 2

Now we can combine all the pieces.

d2h
#!/bin/rc
rfork e
if (~ $#* 0)
args="{cat}
if not
args=$*
{
echo 'obase=16’
for (num in $args)
echo $num
}| bc

We try our new script below. When using its standard input to read the numbers, it usgs. theconstruct to
executecat , which reads all the input, and to place the text read in the environment vaaigisle This means
that it will not print a single line of output until we have typed all the numbers and csetiol-dto simulate an
end of file.

control-d
14
le

; dzh334
3
4
Our new command is ready for use, and it can be combined with other commands, $kq i10|d2h . It

would work as expected.

An early exercise in this book asked to upfing to probe for all addresses for machines in a local net-
work. Addresses were of the forg12.128.3.X with X going from 1 to 254. You now know how to do it fast!

nums="{seq 1 254}
for (n in $nums) ip/ping 212.128.3.$n

Before this example, you might have been saying: Why should | bother to write several shell command lines to do
what | can do with a single loop in a C program? Now you may reconsider the question. The answer iscthat in
it is very easy to combine commands. Doing it in C, that is a different business.

By the way. Use variables! They might save a lot of typing, not to talk about making commands more sim-
ple to read. For instance, the next commands may be better than what we just did. If we hav2lid.1288.3
again, which is likely if we are playing with that network, we might just $agt .

- 167 -

i nums=Y{seq 1 254}
;o net=212.128.3.
. for (nin $nums) ip/ping $net"$n

8.5. Conditions

Let's go back to commands used for expressing conditions in our shell programs. The shell opanats
expressions. They are the same expressions used for globbing. The operator receives at least two arguments,
maybe more. Only the first one is taken as a string. The remaining ones are considered as expressions to be
matched against the string. For example, this iterates over a set of files and prints a string suggesting what the file
might be, according to the file name.

ffile
#!/bin/rc
rfork e
for (file in $*) {
if (~ $file *.c *.h)
echo $file: C source code
if (~ $file *.gif)
echo $file: GIF image
if (~ $file *.jpg)

echo $file: JPEG image
}

And here is one usage example.

; filex.ca.hb.gifz
X.c: C source code
a.h: C source code
b.gif: GIF image

Note that before executing thecommand, the shell expanded the variables, $fiild was replaced with the
corresponding argument on each pass of the loop. Also, because the shell knowskest expressions, it is not
necessary to quote therRc does it for you.

The script can be improved. It would be nice to state fieat does not know what a file is if its name does
not match any of the expressions we have used. We could addl thas a final conditional inside the loop of the
script.

if (I ~ $file *.[ch] *.gif *.jpg)
echo $file: who knows

The builtin command in rc is used as a negation. It executes the command given as an argument. If the com-
mand exit status meant ok, therfails. And vice-versa.

But that was a poor way of doing things. There isvéitch construct inrc that permits doing multiway
branches, like the construct of the same name in C. The ore takes one string as the argument, and executes
the branch with a regular expression that matches the string. Each branch is labeled with thasgofdllowed
by the expressions for the branch. This is an example that improves the previous script.

- 168 -

#l/bin/rc
rfork e
for (file in $*) {
switch($file){
case *.c *.h
echo $file: C source code
case *.gif
echo $file: GIF image
case *.jpg
echo $file: JPEG image
case *

}

echo $file: who knows

}

As you can see, in a singt@se you may use more than one expression, like you can wits a matter of fact,

this script is doing poorly what is better done with a standard command that has the samdileame This
command prints a string after inspecting each file whose name is given as an argument. It reads each file to search
for words or patterns and makes an educated guess.

;. file ch7.ms ch8.ps src/hi.c
ch7.ms: Ascii text
ch8.ps: postscript
src/hi.c: ¢ program

There is another command that was built just to test for things, to be used as a conditfonefquressions in the
shell. This program igest . For example, the optiore can be used to check that a file does exist, and the
option-d checks that a file is a directory.

. test-e /LICENSE
. echo $status

. test-e /blah
. echo $status
test 52313: false
if (test -d /tmp) echo yes
yes
; If (test -d /LICENSE) echo yes

’

Rc includes two conditional operators that remind of the boolean operators in C. The first&Rgitisepresents

an AND operation and executes the command on its right only if the one on its left completed with success. Only
when both commands succeed, the operator does so. For example, we can regadteihe with the follow-

ing code in our naivéile script.

~ $file *.[ch] && echo $file: C source code
~ $file *.gif && echo $file: GIF image
~ $file *jpg && echo $file: JPEG image
Here, on each linegcho is executed only if the previous command, i-€.succeeds.

The other conditional i . It represents an OR operation, and executes the command on the right only if
the one on the left fails. It succeeds if any of the commands do. As an example, this checks for an unknown file
type in our simple script.

~ $file *.[ch] *.gif *.jpg || echo $file: who knows

The next command is equivalent to the previous one, but it would exedhtee times and not just once.

~ $file *.[ch] || ~ $file *.gif || ~ $file *.jpg ||
echo $file: who knows

As you can see, the command is harder to read besides being more complex. But it works just fine as an example.

- 169 -

Many times you would want to execute a particular command when something happens. For example, to
send you an email when a print job completes, to alert you when a new message is posted to a web discussion
group, etc. We can develop a tiny tool for the task. Let’'s calltien. Our new tool can loop forever and check
the condition of interest from time to time. When the condition happens, it can take an appropriate action.

To loop forever, we can use thehile construct. It executes the command used as the condition for the
loop. If the command succeeds, tivile continues looping. Let’s try it.

while(sleep 1)
;; echo one more loop
one more loop
one more loop
one more loop
Delete

The commandleep always succeeds! It is a lucky command. Now, how can we express the condition we are
watching for? And how do we express the action to execute when the condition holds? It seems that supplying
two commands for each purpose is both general and simple to implement. Thenwdaipis going to accept two
arguments, a command to execute that must yield success when the condition holds, and a command to perform
the action. For example,

. when ‘changed http.//indoecencias.blogspot.com’ |
" ‘'mail -s "new indoecencias” nemo’ &

sends a mail tmemo when there are changes liritp://indoecencias.blogspot.com , provided that
changed exits with null status when there are changes in the URL. Also,

;. when ‘test /sys/src/9/pc/main.8 -older 4h’ |
‘cd /sys/src/9/pc ; mk clean’ &

watches out for an object filmain.8 older than 4 hours. When this happens, we assume that someone forgot to
clean up the directorysys/src/9/pc after compiling a kernel, and we execute the command to do some
clean up and remove the object files generated by the compilation.

Nice, but, how do we do it? It is best to experiment first. First try.

cond='test -e /tmp/file’
cmd="echo file is there’

$cond && $cmd
test -e /tmpffile: '/bin/test -e ’ file does not exist

The aim was to execute the command$econd and, when it succeeds, the onediomd. However, the shell
understood thaBcond is a single word. This is perfectly reasonable, as we quoted the whole command. We can
useecho to echo our variable within g ..} construct, that will break the string into words.

Icond="{echo $cond}
. lemd="{echo $cmd}
. echo $#lcond
3
. echo $#lemd
4

And we get back our commands, split into different words as in a regular command line. Now we can try them.

$lcond && $lemd
; There was no file named /tmp/file

And now?

-170 -

;. touch /tmpl/file
. $lcond && $lemd
file is there

We are now confident enough to write our new tool.

when[]
#l/bin/rc
rfork e
if (1 ~$#* 2){
echo usage $0 cond cmd >[1=2]
exit usage

}
cond=‘{echo $1}
cmd="{echo $2}
while(sleep 15){
{$cond} >/dev/null >[2=1] && { {$cmd} ; exit " }
}

We placed braces arourtond and$cmd as a safety measure. To make it clear how we want to group com-
mands in the body of thevhile . Also, after executing the action, the script exits. The condition held and it has
no need to continue checking for anything.

8.6. Editing text

Before, we managed to generate a list of numbers for an array initializer that wethgant to write by our-
selves. But the output we obtained was not yet ready for a cut-and-paste into our editor. We need to convert some-
thing like

1

2

into something like

"0x1",
"0x2",

that can be used for our purposes. There are many programs that operate on text and know how to do complex
things to it. In this section we are going to explore them.

To achieve our purpose, we might convert each number into hexadecimal, and store the resulting string in a
variable. Later, it is just a matter of usiegho to print what we want, like follows.
;o num=32
hexnum="{ echo ‘obase=16"; echo $num } | bc}

. echo "0x"$hexnum”",
"0x20",

We used th¢{ ..} construct executhexnum=..., with the appropriate string on the right hand side of the equal
sign. This string was printed by the command

{ echo 'obase=16" ; echo $num } | bc

that we now know that print20. It is the same command we used in t&h script.

For you, the" ” character may be special. For the shell, it is just another character. Therefore, the shell con-
catenated theé"0x ” with the string from$hexnum and the strind”, ”. That was the argument given écho .
So, you probably know already how to write a few shell command lines to generate the text for your array initial-
izer.

-171 -

for (num in {seq 0 255}) {
" number="{{ echo ‘obase=16", echo $num } | bc}
" echo "Ox"$number”",
iy,
"0x0",
"Ox1",
"Ox2",
...and many others follow.

Is the problem solved? Maybe. This is a very inefficient way of doing things. For each number, we are executing
a couple of processes to recho and then another process to roo. It takes time for processes to start. You
know whatfork andexec do. That must take time. Processes are cheap, but not free. Wouldn't it be better to
use a singléoc to do all the computation, and then adjust the output? For example, this command, using our last
version ford2h, produces the same output. The fisall command inserts some text at the beginning and at the
end of each line, to get the desired output.

;. seq 1255]d2h | sed -e 's/VOX/" -e s/$/"/
"0x0",

"0X1",

"0x2",

...and many others follow.

To see the difference between this command line, and the dinectoop used above, we can usme to mea-
sure the time it takes to each one to complete. We placed the command above fa@ingraéio a/tmp/for
script, and the last command used, ussed , at a script inftmp/sed . This is what happen.

;. time /tmp/sed >/dev/null

0.34u 1.63s 5.22r /tmp/sed
;. time /tmp/for >/dev/null
3.64u 24.38s 74.30r Itmp/for

Thetime command uses th&ait system call to obtain the time for its child (the command we want to measure

the time for). It reports the time spent by the command while executing user code, the time it spent while inside
the kernel, executing system calls and the like, and the real (elapsed) time until it completed. Our loop, starting
several processes for each number being processed, takes 74.3 seconds to generate the output we want! That i
admittedly a lot shorter than doing it by hand. However, the time needed to do the sameagsiag a final pro-

cessing step in the pipeline is just 5.22 seconds. Besides, we had to type less. Do you think it pays?

The progransed is astream editor It can be used to edit data as it flows through a pipeline. Sed reads text
from the input, applies the commands you give to edit that text, and writes the result to the output. In most cases,
this command is used to perform simple tasks, like inserting, deleting, or replacing text. But it can be used for
more. As with most other programs, you may specify the inpuséat by giving some file names as arguments,
or you may let it work with the standard input otherwise.

In general, editing commands are given as arguments teethaption, but if there is just one command, you
may omit the-e . For example, this prints the first 3 lines for a file.

sed 3q /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,
with the following notable exceptions:

’

All sed commands have either none, one, or gldressesind then the command itself. In the last example there

was one addres$, and one commandj. The editor reads text, usually line by line. For each text reed,

applies all the editing commands given, and copies the result to standard output. If addresses are given for a com-
mand, the editor applies the command to the text selected by those addresses.

A number is an address that corresponds to a line number. The conmapits. What happened in the
example is that the editor read lines, and printed them to the output, until the a8dsssmatched. That was at
line number 3. The commarglit was applied, and the rest of the file was not printed. Therefore, the previous
command can be used to print the first few lines for a file.

-172 -

If we want to do the opposite, we may justletesome lines, from the one with address 1, to the one with
address 3. As you can see below, both addresses are separated with a comma, and the command to apply follows
Thereforesed searched for the text matching the address p&ir (i.e., lines 1 to 3), printing each line as it was
searching. Then it copied the text selected to memory, and applied degnmand. These lines were deleted.
Afterwards,sed continued copying line by line to its memory, doing nothing to each one, and copying the result
to standard output.

, sed 1,3d /LICENSE

1. No right is granted to create derivative works of or
to redistribute (other than with the Plan 9 Operating System)
...more useful stuff for your lawyer...

Supplying just one command, with no address, applies the command to all lines.
sed d /LICENSE

Was the/LICENSE deleted? Of course not. This editor isteeameditor. It reads, applies commands to the text
while in the editor's memory, and outputs the resulting text.

How can we print the lines 3 to 5 from our input file? One strategy is to usedtlecommand to print the
text selectedp, selecting lines 3 to 5. And also, we must &sd not to print lines by default after processing
them, by giving then flag.

; sed-n35p/LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or

The special addregsmatches the end of the file. Therefore, this deletes from line 3 to the end of the file.

sed '3,$d’ /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,

What follows deletes lines between the one matcliimgnted/ , i.e., the first one that contains that word, and
the end of the file. This is like using,3d . There are two addresses and @ommand. It is just that the two
addresses are more complicated this time.

;. sed /granted/,$d’ /LICENSE

The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,
with the following notable exceptions:

3

Another interesting command feed isr. This one reads the contents of a file, and writes them to the standard
output before proceeding with the rest of the input. For example, given these files,

. cat salutation
Today | feel
FEEL
So be warned
cat how
Really in bad mood

’

we can useed to adjust the text irsalutation so that the line withFEEL is replaced with the contents of the
file how. What we have to do is to giveed an address that matches a line with the fekEL in it. Then, we
must use thel command to delete this line. And later we will have to insert in place the contents of the other file.

-173 -

. sed /FEEL/d <salutation
Today | feel
So be warned

The addres#FEEL/ matches the strin§EEL, and therefore selects that line. For each match, the comuhand
removes its line. If there were more than one line matching the address, all of such lines would have been deleted.
In generalsed goes line by line, doing what you want.

; cat salutation salutation | sed /FEEL/d
Today | feel

So be warned

Today | feel

So be warned

We also wanted to insert the text ow in place, besides deleting the line wifEEL. Therefore, we want to
executetwo commands when the addre$EEL/ matches in a line in the input. This can be done by using
braces, bused is picky regarding the format of its program, and we prefer to use several lines feethero-
gram. Fortunately, the shell knows how to quote it all.

; sed -e /FEELA
5 rhow

nod

;. }<salutation
Today | feel

Really in bad mood
So be warned

In general, it is a good idea to quote complex expressions that are meant not for shell, but for the command being
executed. Otherwise, we might use a character with special meaning fand there could be surprises.

This type of editing can be used to prepare templates for certain files, for example, for your web page, and
then automatically adjust this template to generate something else. You can see the page at
http://lsub.org/who/nemo , Which is generated using a similar technique to state whether Nemo is at his
office or not.

The most usefused command is yet to be seen. It replaces some text with another. Many people who do
not know how to useed, knowat least how to useed just for doing this. The command s (for substitute,
and is followed by two strings. Both the command and the strings are delimited using any character you please,
usually a/ . For examples/bad/good/ replaces the stringad with good .

;. echo Really in bad mood [sed 's/bad/good/’
Really in good mood

The quoting was unnecessary, but it does not hurt and it is good to get used to quote arguments that may get spe-
cial characters inside. There are two things to see here. The comsaaqplies taall lines of input, because no
address was given. Also, as it is, it replaces only the first appearabegldh the line. Most times you will add a

final g, which is a flag that makes substitute all occurrences (globally) and not just the first one.

This lists all files terminating inh , and replaces that termination with , to generate a list of files that
may contain the implementation for the things declared in the header files.

Is *h
cook.h
gui.h
. Is*h[sed ’'s/.h/.c/g’
cook.c
gui.c

You can now do more things, like renaming all the files terminatedén to files terminated inc , (in case you
thought it twice and decided to use C instead of C++). We make some attempts before writing the command that
does it.

- 174 -

echo foo.cc | sed ’s/.cc/.c/g’
foo.c
;. f=foo.cc
;. nf={echo $f | sed ’s/.cc/.c/g’}
;. echo $nf
foo.c
; for(fin *cc) {
. nf={echo $f | sed ’s/.cc/.c/g’}
oo mv $f $nf

; all of them renamed!

At this point, it should be easy for you to understand the command we used to generate the array initializer for
hexadecimal numbers

sed -e 's/N\"Ox/" -e 'sI$/",/

It had two editing commands, therefore we had to «sdor both ones. The first one replaced the start of a line
with “0x”, thus, it inserted this string at the beginning of line. The second ins&rtédat the end of line.

8.7. Moving files around

We want to copy all the files in a file tree to a single directory. Perhaps we have one directory per music album,
and some files with songs inside.

du -a
Jalanparsons/irobot.mp3
Jalanparsons
[pausini/trateilmare.mp3
Jpausini
Jsupertramp/logical.mp3
Jsupertramp

AR RRRNPRE-

But we may want to burn a CD and we might need to keep the songs in a single directory. This can be done by
usingcp to copy each file of interest into another one at the target directory. But file names may not ihclude
and we want to preserve the album name. We carsadeto substitute thé with another character, and then

copy the files.

. for (fFin **mp3) {

5w nf={echo $f | sed s,/_,g}
. echo cp $f /destdir/$nf

.. }

Ep alanparsons/irobot.mp3 /destdir/alanparsons_irobot.mp3
cp pausini/trateilmare.mp3 /destdir/pausini_trateilmare.mp3
cp supertramp/logical.mp3 /destdir/supertramp_logical.mp3

’

Here, we used a comma as the delimiter forskd command, because we wanted to use the slash in the expres-
sion to be replaced.

To copy the whole file tree to a different place, we cannotegse Even doing the same thing that we did
above, we would have to create the directories to place the songs inside. That is a burden. A different strategy is to
create amarchive for the source tree, and then extract the archive at the destination. The cortananftape
archive) was initially created to make tape archives. We no longer use tapes for achieving things: But
remains a very useful command. A tape archive, also known as a tar-file, is a single file that contains many other
ones (including directories) bundled inside.

Whattar does is to write to the beginning of the archive a table describing the file names and permissions,

and where in the archive their contents start and terminate. id@deris followed by the contents of the files
themselves. The optiort creates one archive with the named files.

-175-

;tar -c * >/tmp/music.tar

We can see the contents of the archive using the option

;. tar -t </tmp/music.tar
alanparsons/
alanparsons/irobot.mp3
pausini/
pausini/trateilmare.mp3
supertramp/
supertramp/logical.mp3

Option-v , adds verbosity to the output, like in many other commands.

tar -tv </tmp/music.tar

d-rwxr-xr-x 0 Jul 21 00:02 2006 alanparsons/
-=rW-r--r-- 13 Jul 21 00:01 2006 alanparsons/irobot.mp3
d-rwxr-xr-x 0 Jul 21 00:02 2006 pausini/

--IW-f--r-- 13 Jul 21 00:02 2006 pausini/trateilmare.mp3
d-rwxr-xr-x 0 Jul 21 00:02 2006 supertramp/
-=rW-r--r-- 13 Jul 21 00:02 2006 supertramp/logical.mp3

This lists the permissions and other file attributes. To extract the files in the archive, we can use thexoption
Here we add am as well just to see what happens.

;cd otherdir

;. tar xv </tmp/music.tar

alanparsons

alanparsons/irobot.mp3

pausini

pausini/trateilmare.mp3

supertramp

supertramp/logical.mp3

;e

alanparsons pausini supertramp

The size of the archive is a little bit more than the size of the files placed in it. That is to sapithatoes not
compress anything. If you want to compress the contents of an archive, so it occupies less space in the disk, you
may usegzip . This is a program that uses a compression algorithm to exploit regularities in the data to use more
efficient representation techniques for the same data.

. gzZip music.tar

. Is -l music.*

--rw-r--r-- M 19 nemo nemo 10240 Jul 21 00:17 music.tar
--rw-r--r-- M 19 nemo nemo 304 Jul 21 00:22 music.tgz

The filemusic.tgz was created bygzip . In most casegzip adds the extensiogz for the compressed file
name. But tradition says that compressed tar files terminatgan .

Before extracting or inspecting the contents of a compressed archive, we must uncompress it. Below we also
use the optionf for tar , that permits specifying the archive file as an argument.

; tar -tf music.tgz

/386/bin/tar: partial block read from archive
;. gunzip music.tgz

; tar -tf music.tar

alanparsons/

alanparsons/irobot.mp3

...etc...

So, how can we copy an entire file tree from one place to another? You now know howttr uséiere is how.
;. @f{cd/music ; tar -c *} | @{ cd /otherdir; tar x }

-176 -

The output for the first compound command goes to the input of the second one. The first one changes its direc-
tory to the source, and then creates an archive sent to standard output. In the second one, we change to the destina
tion directory, and extract the archive read from standard input.

A new thing we have seen here is the express®{..} which is like { ...} but executes the command block

in a child shell. We need to do this because each block must work at a different directory.

Problems

1

The file/lib/ndb/local lists machines along with their IP addresses. Suppose all addresses are of the
form, 121.128.1.X . Write a script to edit the file and change all the addresses to be of the form
212.123.2.X

Write a script to generate a template forlia/ndb/local , for machines namesdlphaN , whereN
must correspond to the last number in the machine address.

Write a script to locate ifsys/src the programs using the system gaibe . How many programs are
using it? Do not do anything by hand.

In many programs, errors are declared as strings. Write a script that takes an error message list and generates
both an array containing the message strings and an enumeration to refer to entries in the array.

Hint: Define a common format for messages to simplify your task.

Write a script to copy just C source files below a given director$hiome/source/ . How many source
files do you have? Again, do not do anything by hand.

Write a better version for thile script developed in this chapter. Use some of the commands you know
to inspect file contents to try to determine the type of file for each argument of the script.

O — More tools

9.1. Regular expressions
We have useded to replace one string with another. But, what happens here?

echo foo.xcc [sed ’'s/.cc/.c/g’
foo..c
;. echo focca.x [sed 's/.cc/.c/g’
f.ca.x

We need to learn more.

In addresses of the foritext/ and in commands like/text/other/ , the stringtext is not a string
for sed. This happens to many other programs that search for things. For example, we hagespsedd print
only lines containing a string. Well, ttetring given to grep, like in

;grep string filel file2 ...

is not a string. It is aregular expression A regular expression is a little language. It is very useful to master it,
because many commands employ regular expressions to let you do complex things in an easy way.

The text in a regular expression represents many different strings. You have already seen something similar.
The*.c in the shell, used for globbing, is very similar to a regular expression. Although it has a slightly different
meaning. But you know that in the shellc matcheswith many different strings. In this case, those that are file
names in the current directory that happen to terminate with the charactérsThat is what regular expressions,
or regexps are for. They are used to select or match text, expressing the kind of text to be selected in a simple
way. They are a language on their own. A regular expression, as knoweadaygrep , and many others, is best
defined recursively, as follows.

e Any single charactamatcheghe string consisting of that character. For examalmatches, but notb.

“w n [}

e Asingle dot,”“. ”, matchesanysingle character. For example,” matches andb, but notab.

e A set of characters, specified by writing a string within brackets, [li#e123] , matchesanycharacter in
the string. This example would mateh b, or 3, but notx. A set of characters, but starting with matches
any charactenotin the set. For exampl¢abc123] matches, but notl, which is in the string that fol-
lows the”. A range may be used, like f@-z0-9] , which matches any single character that is a letter or
a digit.

e Asingle”, matches the start of the text. And a sinfjlematches the end of the text. Depending on the pro-
gram using the regexp, the text may be a line or a file. For example, whengrgipg a matches the char-
actera at any place. Howeverfa matchesa only when it is the first character in a line, and$ also
requires it to be the last character in the line.

e Two regular expressions concatenated match any text matching the first regexp followed by any text match-
ing the second. This is more hard to say than it is to understand. The expralsionatchesabc because
a matchesa, b matched, and so on. The expressif@z]x matches any two characters where the first
one matchef-z] , and the second one is &n

e Adding a* after a regular expression, matches zero or any number of strings that match the expression. For
example x* matches the empty string, and abspxx, xxx , etc. Bewareab* matchesa, ab, abb, etc.
But it doesnotmatchabab . The* applies to the preceding regexp, with is jbsin this case.

e Adding a+ after a regular expression, matches one or more strings that match the previous regexp. It is like
*, but there has to be at least one match. For exampleloes not match the empty string, but it matches
every other thing matched by .

e Adding a? after a regular expression, matches either the empty string or one string matching the expression.
For examplex? matchex and the empty string. This is used to make parts optional.

o Different expressions may be surrounded by parenthesis, to alter grouping. For ex@pte, matches
ab, abab, etc.

-178 -

e Two expressions separated pynatch anything matched either by the first, or the second regexp. For exam-
ple,ablxy matchesb, orxy.

e A backslash removes the special meaning for any character used for syntax. This is esbageharac-
ter. For example(is not a well-formed regular expression, h(t is, and matches the strir(g To use a
backslash as a plain character, and not as a escape, use the backslash to escape itself, like in

That was a long list, but it is easy to learn regular expressions just by using them. First, let’s fix the ones we used
in the last section. This is what happen to us.

echo foo.xcc [sed ’'s/.cc/.c/g’
foo..c
;. echo focca.x [sed 's/.cc/.c/g’
f.ca.x

But we wanted to replacec , and notany character and ec. Now we know that the first argument to tbed
commands, is a regular expression. We can try to fix our problem.

;. echo foo.xcc [sed 's/l.cc/.c/g’
foo.xcc

echo focca.x | sed ’s/l.cc/.c/g’
focca.x

It seems to work. The backslash removes the special meaning for the dot, and makes it match just one dot. But
this may still happen.

; echo foo.cc.x | sed 's/\.cc/.c/g’
foo.c.x

And we wanted to replace only the extension for file names endingdn. We can modify our expression to
match.cc only when immediately before the end of the line (which is the string being matched here).

; echo foo.cc.x | sed 's/\.cc$/.c/g’
foo.cc.x

echo foo.x.cc [sed ’s/\.cc/.c/g’
foo.x.c

Sometimes, it is useful to be able to refer to text that matched part of a regular expression. Suppose you want to
replace the variable nantext with word in a program. You might try withs/text/word/g , but it would
change other identifiers, which is not what you want.

; catfce
void
printtext(char* text)

{
print("[%s]", text);

;. sed 's/text/word/g’ f.c
void
printword(char* word)

print("[%s]", word);

The change is only to be doneviford is not surrounded by characters that may be part of an identifier in the pro-
gram. For simplicity, we will assume that these characters ar¢gued-9] . We can do what follows.

;. sed 's/(["a-z0-9 text(["a-z0-9 _[)/|1word|2/g’ f.c
void
printtext(char* word)

print("[%s]", word);

-179 -

The regular expressidna-z0-9_]Jtext[*a-z0-9_] means‘any character that may not be part of an iden-
tifier”, thentext , and ther‘any character that may not be part of an identifidBecause the substitution affects
all the regular expression, we need to substitute the matched string with another one tvatdhasstead of
text , but keeping the characters match[g-z0-9_] before and after the stringxt . This can be done by

surrounding in parentheses bdffa-z0-9_] . Later, in the destination string, we may ude to refer to the
text matching the first regexp within parenthesis, &do refer to the second.
Becauseprinttext is not matched by*a-z0-9_Jtext[*a-z0-9_] , it was untouched. However,

“text) ” was matched. In the destination string, was a white space, because that is what matched the first
parenthesized part. An@ was a right parenthesis, because that is what matched the second one. As a result, we
left those characters untouched, and used thecortextto determine when to do the substitution.

Regular expressions permit to clean up source files in an easy way. In may cases, it makes no sense to keep
white space at the end of lines. This removes them.

sed 's/f i 4

We saw that a scrit+ can be used to indent text in Acme. Hereitis.

. cat /bin/t+
#/bin/rc
sed s/ I

’

This other script removes one level of indentation.

. cat /bin/t-
#!/bin/rc
sed’s/* Il

’

How many mounts and binds are performed by the standard namespace? How many others of your own did you
add? The file/lib/namespace is used to build an initial namespace for you. But this file has comments, on
lines starting with#, and may have empty lines. The simplest thing would be to search just for what we want,
and count the lines.

;. sed 7q /lib/namespace

root

mount -aC #s/boot /root $rootspec
bind -a $rootdir /

bind -c $rootdir/mnt /mnt

kernel devices
bind #c /dev

grep \(bindlmount)’ /lib/namespace
mount -aC #s/boot /root $rootspec
bind -a $rootdir /
bind -c $rootdir/mnt /mnt

grep (bindlmount)’ /lib/namespace [wc -/
41
grep “\(bind/mount)’ /proc/$pid/ns [wc -/
72

We had 41 binds/mounts in the standard namespace, and the one used by our shell (as repomnedfibg) itas
72 binds/mounts. It seems we added many ones in our profile.

There are many other useful uses of regular expressions, as you will be able to see from here to the end of this
book. In many cases, your C programs can be made more flexible by accepting regular expressions for certain
parameters instead of mere strings. For example, an editor might accept a regular expression that determines if the
text is to be shown using eonstant width font or aproportional width font For file names matching,
say.*\.[ch] , it could use a constant width font.

-180 -

It turns out that it istrivial to use regular expressions in a C program, by usinge¢gexp library. The
expression izompiledinto a description more amenable to the machine, and the resulting data structure (called a
Reprog) can be used for matching strings against the expression. This program accepts a regular expression as a
parameter, and then reads one line at a time. For each such line, it reports if the string read matches the regular
expression or not.

#include <u.h>
#include <libc.h>
#include <regexp.h>

void
main(int argc, char* argv[])
{
Reprog* prog;
Resub sub[16];
char buf[1024];
int nr, ismatch, i;
if (argc = 2){
fprint(2, "usage: %s regexp\n”, argv[0]);
exits("usage");
}
prog = regcomp(argv[1]);
if (prog == nil)
sysfatal("regexp '%s’: %r", buf);
for(;){
nr = read(0, buf, sizeof(buf)-1);
if (nr <=0)
break;
buf[nr] = O;
ismatch = regexec(prog, buf, sub, nelem(sub));
if (lismatch)
print("no match\n");
else {
print("matched: ™);
write(1, sub[0].sp, sub[0].ep - sub[0].sp);
print(*’\n");
}
}
exits(nil);
}

The call toregcomp compilesthe regular expression infirog . Later,regexec executeshe compiled regular
expression to determine if it matches the string just redalin. The parametesub points to an array of struc-

tures that keeps information about the match. The whole string matching starts at the character pointed to by
sub[0].sp and terminates right before the one pointed tosbfp[0].ep . Other entries in the array report
which substring matched the first parenthesized expression in the reqyefft] , which one matched the sec-

ond onesub[2] , etc. They are similar til ,\2 , etc. This is an example session with the program.

-181 -

8.match *.c’
regerror: missing operand for * The * needs something on the left!

;. 8.match .[123]
x123

no match

.123

matched: *.1’

X.Z

no match

Xx.3

matched: .3’

9.2. Sorting and searching

One of the most useful task achieved with a few shell commands is inspecting the system to find out things. In
what follows we are going to learn how to do this, using several assorted examples.

Running out of disk space? It is not likely, given the big disks we have today. But anyway, which ones are
the biggest files you have created at your home directory?

The commandiu (disk usage) reports disk usage, measured in disk blocks. A disk block is usually 8 or 16
Kbytes, depending on your file system. Althoudh -a reports the size in blocks for each file, it is a burden to
scan by yourself through the whole list of files to search for the biggest one. The consm@nds used to sort
lines of text, according to some criteria. We can asikt to sort the output oflu numerically ¢n) in decreasing
order €r), with biggest numbers first, and then usad to print just the first few lines. Those ones correspond to
the biggest files, which we are interested in.

du -a bin [sort -nr | sed 15q

4211 bin

3085 bin/arm

864 bin/arm/enc

834 bin/386

333 bin/arm/madplay
320 bin/arm/madmix
319 bin/arm/deco
316 bin/386/minimad
316 bin/arm/minimad
280 bin/farm/mp3

266 bin/386/minisync
258 bin/rc

212 bin/arm/calc

181 binfarm/mpg123

146 bin/386/r2bib

’

This includes directories as well, but point us quickly to files [e/arm/enc that seem to occupy 864 disk
blocks!

But in any case, if the disk is filling up, it is a good idea to locate the users that created files (or added data
to them), to alert them. The flagn for Is lists the user hame that last modified the file. We may collect user
names for all the files in the disk, and then notify them. We are going to play with commands until we complete
our task, usinged to print just a few lines until we know how to process all the information. The first step is to
use the output ofiu as the initial data, the list of files. If we remove everything up to the file names, we obtain a
list of files to work with.

; adu-abin|sed’s/*// | sed 3q
bin/386/minimad
bin/386/minisync

bin/386/r2bib

-182 -

Now we want to list the user who modified each file. We can change our data to produce the commands that do
that, and send them to a shell.

du -a bin | sed ’s/.* /" | sed 's/Vls -m /' | sed 3q
Is -m bin/386/minimad
Is -m bin/386/minisync
Is -m bin/386/r2bib

du -a bin | sed ’s/.* /' | sed 's/YIs -m /' [sed 3q | rc
[nemo] bin/386/minimad
[none] bin/386/minisync
[nemo] bin/386/r2bib

We still have to work a little bit more. And our command line is growing. Being able to edit the text at any place

in a Rio window does help, but it can be convenient to defirghall function that encapsulates what we have

done so far. A shell function is like a function in any other language. The difference is that a shell function
receives arguments as any other command, in the command line. Besides, a shell function has command lines in
its body, which is not a surprise. Defining a function for what we have done so far can save some typing in the
near future. Furthermore, the command we have just built, to list all the files within a given directory, is useful by
itself.

;o fir{
du-a $1 [sed’s/.*//" | sed 's/VIs-m /' | rc
/

3

This defined a function, naméd , that executes exactly the command line we developed. In the furictiowe
removed thesed 3q because it is not reasonable for a function listing all files recursively to stop after listing
three of them. If we want to play, we can always add a fsed in a pipeline. Arguments given to the function

are accessed like they would be in a shell script. The difference is that the function is executed by the shell where
we call it, and not by a child shell. By the way, it is preferable to create useful commands by creating in a shell,
functions can not be edited as scripts, and are not automatically shared among all shells like files are. Functions
are handy to make modular scripts.

Rc stores the function definition using an environment variable. Thus, most things said for environment
variables apply for functions as well (e.g., think abdotk e).

;cat /env/fn#r’
fn Ir {du -a $1|sed 's/.* II'|sed 's/MIs -m ['|rc}

’

The builtin functionwhatis is more appropriate to find out what a name isror. It prints the value associated
to the name in a form that can be used as a command. For example, hevehigtisf says about several names,
known to us.

. whatis Ir

fn Ir {du -a $1|sed 's/.* /I'|sed 's/™1s -m ['|rc}
. whatis cd

builtin cd

;. whatis echo path

/bin/echo

path=(. /bin)

This is more convenient than looking througin , /env , and therc(1) manual page to see what a name is.
Let’s try our new function.

-183 -

Ir bin
[nemo] bin/386/minimad
[none] bin/386/minisync
[nemo] bin/386/r2bib
[nemo] bin/386/rc2bin
...and many other lines of output...

To obtain our list of users, we may remove everything but the user name.
. Irbin | sed ’s/.([a-z0-9]+).*11/" | sed 3q
nemo

none
nemo

And now, to get a list of users, we must drop duplicates. The progragqm knows how to do it, it reads lines and
prints them, lines showing up more than once in the input are printed once. This program needs an input with
sorted lines. Therefore, we do what we just did, and sort the lines and remove duplicate ones.
Ir bin | sed ’s/.([a-z0-9]+).*11/" | sort | uniq
esoriano
nemo
none

’

Note that we removesled 3q from the pipeline, because this command does what we wanted to do and we want
to process the whole file tree, and not just the first three ones. It happersothatalso knows how to remove
duplicate lines, after sorting them. The flag askssort to print a unique copy of each output line. We can opti-
mize a little bit our command to list file owners.

Ir bin [sed ’s/.(fa-z0-9]+).*/\1/" | sort -u

What if we want to list user names that own files at several file trees?/&éy]l and/n/fs2 . We may have

several file servers but might want to list file owners for all of them. It takes timdrfoto scan an entire file

tree, and it is desirable to process all trees in parallel. The strategy may be to use several command lines like the
one above, to produce a sorted user list for each file tree. The combined user list can be obtained by merging both
lists, removing duplicates. This is depicted in figure 9.1.

Ir/Inffsl = sed = sort

sort-mu = sorted

Ir /Inffs2 = sed = sort

Figure 9.1: Obtaining a file owner list using sort to merge two listsfédr andfs2

We define a functiorusers to run each branch of the pipeline. This provides a compact way of execut-
ing it, saves some typing, and improves readability. The output from the two pipelines is merged using the flag
-m of sort , which merges two sorted files to produce a single list. Theflaqunique) must be added as well,
because the same user could own files in both file trees, and we want each name to be listed once.

- 184 -

fn lrusers { Ir $1 | sed ’s/.([a-z0-9]+).*/\1/’ | sort }
. sort -mu <{lrusers /n/fs1} <{lrusers /n/fs2}
esoriano
nemo
none
paurea

Forsort , each<{..} constructis just a file name (as we saw). This is a simple way to let us use two pipes as the
input for a single process.

To do something different, we can revisit the first example in the last chapter, finding function definitions.
This script does just that, if we follow the style convention for declaring functions that was shown at the begin-
ning of this chapter. First, we try to ugeep to print just the source line where the functicat is defined in the
file /sys/src/cmd/cat.c . Our first try is this.

;. grep cat /sys/src/cmd/cat.c
cat(int f, char *s)
argv0 = "cat";
cat(0, "<stdin>");
cat(f, argv[i]);

Which is not too helpful. All the lines contain the strimgt , but we want only the lines whemat is at the
beginning of line, followed by an open parenthesis. Second attempt.

grep “catl(’ /sys/src/cmd/cat.c
cat(int f, char *s)

At least, this prints just the line of interest to us. However, it is useful to get the file name and line number before
the text in the line. That output can be used to point an editor to that particular file and line number. Because
grep prints the file name when more than one file is given, we could/dee/null as a second file where to
search for the line. It would not be there, but it would mgkep print the file name.

. grep catl(’ /sys/src/cmd/cat.c /dev/null
/sys/src/cmd/cat.c:cat(int f, char *s)

Giving the option-n to grep makes it print the line number. Now we can really search for functions, like we do
next.

;. grep -n catl(’ /sys/src/cma/*.c
/sys/src/cmd/cat.c:5: cat(int f, char *s)

And because this seems useful, we can package it as a shell script. It accepts as arguments the names for functions
to be located. The commanplep is used to search for such functions at all the source files in the current direc-
tory.

#!/bin/rc
rfork e
for (f in $*)
grep -n "V$f\(" *.[cCh]

How can we usgrep to search forn ? If we try,grep would get confused, thinking that we are supplying an
option. To avoid this, thee option tellsgrep that what follows is a regexp to search for.

; cat text

Hi there

How can we grep for -n?
Who knows!

;grep -n text

;. grep -e -n text

how can we grep for -n?

This program has other useful options. For example, we may want to locate lines in the file for a chapter of this
book where we mention figures. However, if the wdigure is in the middle of a sentence it would be all

-185 -

lower-case. When it is starting a sentence, it would be capitalized. We must search bétiguier and
figure. The flag-i makesgrep become case-insensitive. All the text read is converted to lower-case before
matching the expression.

grep -i figure ch1.ms
Each window shows a file or the output of commands. Figure
figure are understood by acme itself. For commands
shown in the figure would be
...and other matching lines

A popular searching task is determining if a file containing a mail message is spam or not. Today, it would not
work, because spammers employ heavy armoring, and even send their text encoded in multiple images sent as
HTML mail. However, it was popular to see if a mail message contained certain expressions, if it did, it was con-
sidered spam. Because there will be many expressions, we may keep them in a file. Thefogworgrep

takes as an argument a file containing all the expressions to search for.

cat patterns
Make money fast!
Earn 10+ millions
(Take|use) viagra for a (better|best) life.
. if (grep -i -f patterns $mail) echo $mail is spam

9.3. Searching for changes

A different kind of search is looking for differences. There are several tools that can be used to compare files. We
sawcmp, that compares two files. It does not give much information, because it is meant to compare files that are
binary and not textual, and the program reports just which one is the first byte that makes the files different. How-
ever, there is another todljff , that is more useful thaomp when applied to text files. Many timedijff is

used just to compare two files to search for differences. For example, we can compare the tlbnfites and

Itmp/t- , that look similar, to see how they differ. The tool reports what changed in the first file to obtain the
contents in the second one.

o diff /bin/t+ /bin/t-
2c2,3
< exec sed s/ &

> exec sed 's/™ Il
>

The output shows the minimum set of differences between both files, here we see just one. Each difference
reported starts with a line likec2,3 , which explains which lines differ. This tool tries to show a minimal set of
differences, and it will try to aggregate runs of lines that change. In this way, it can simply say that several (con-
tiguous) lines in the first file have changed and correspond to a different set of lines in the second file. In this case,
line 2 in the first file ¢+) has changed in favor of lines 2 and 3 in the second file. If we replace ling+ imith

lines 2 and 3 from- , both files have be the same contents.

After the initial summarydiff shows the relevant lines that differ in the first file, preceded by an initial
sign to show that they come from the file on the left in the argument list, i.e., the first file. Finally, the lines that
differ in this case for the second file are shown. The line 3 is an extra empty line, bdifffor that is a differ-
ence. If we remove the last empty linetin, this is whatdiff — says:

 diff /bin/t'\(+ -)

2c2

< exec sed 's/* r

> exec sed 's/™ Il

Let's improve the script. It does not accept arguments, and it would be better to print a diagnostic and exit when
arguments are given.

- 186 -

tabn
#!/bin/rc
if (I ~ $#* 01
echo usage: $0 >[1=2]
exit usage

}

exec sed 's/M I

This is whatdiff says now.

. diff /bin/t+ tab

la2,5

> if (I ~ $#* 0){

> echo usage: $0 >[1=2]

> exit usage

>}
In this case, no line has thangein /bin/t+ to obtain the contents b . However, we musaddlines 2to 5
from tab after line 1 of/bin/t+ . This is whatla2,5 means. Reversing the argumentsdidff produces
this:

. diff tab /bin/t+

2,5d1

<if (1 ~ $#* 0){

< echo usage: $0 >[1=2]

< exit usage

<}

Lines 2 to 5 oftab must be deleted (they would be after line /oih/t+), if we wanttab to have the same
contents ofbin/t+

Usually, it is more convenient to rudiff supplying the optionn , which makes it print the file names
along with the line numbers. This is very useful to easily open any of the files being compared by addressing the
editor to the file and line number.

o diff -n /bin/t+ tab
/bin/t+:1 atab:2,5

> if (1 ~ $#* 0){

> echo usage: $0 >[1=2]
> exit usage

>}

Although some people prefer the (context) flag, that makes it more clear what changed by printing a few lines
of context around the ones that changed.

. diff -n /bin/t+ tab
/bin/t+:1,2 - tab:1,6

#l/bin/rc
+if (I ~ $#* 0){
+ echo usage: $0 >[1=2]
+ exit usage
+}
exec sed s/ r

’

Searching for differences is not restricted to comparing just two files. In many cases we want to compare two file
trees, to see how they differ. For example, after installing a new Plan 9 in a disk, and using it for some time, you
might want to see if there are changes that you made by mistake. Comparing the file tree in the disk with that used
as the source for the Plan 9 distribution would let you know if that is the case.

-187 -

This tool, diff , can be used to compare two directories by giving their names. If works like above, but
compares all the files found in one directory with those in the other. Of course, now it can be that a given file
might be just at one directory, but not at the other. We are going to copy our $hotee/bin to a temporary
place to play with changes, instead of using the whole file system.

@fcd;tarcbin} | @{cd/tmp ; tarx}

3

Now, we can change- in the temporary copy, by copying thiab script we recently made. We will also add a
few files to the new file tree and remove a few other ones.

. Cp tab /tmp/bin/re/t+
;. ¢p rcecho /tmp/bin/rc
;. rm /tmp/bin/re/N(d2h h2d)

So, what changed? The optien asksdiff to go even further and compare two entire file trees, and not just
two directories. It descends when it finds a directory and recurs to continue the search for differences.

;. diff -r ($home /tmp)’/bin

Only in /usr/nemo/bin/rc: d2h

Only in /usr/nemo/bin/rc: h2d

Only in /tmp/bin/rc: rcecho

diff /usr/nemo/bin/rc/t+ tmp/bin/rc/t+

la2,5

> if (1 ~ $#* 0){

> echo usage: $0 >[1=2]
> exit usage

>}

’

The filesd2h andh2d are only atthome/bin/rc , we removed them from the copied tree. The fdecho is
only at /tmp/bin/rc instead. We created it there. Faiff , it would be the same if it existed at
$home/bin/rc and we removedcecho from there. Also, there is a file that is different, , as we could
expect. Everything else remains the same.

It is now trivial to answer questions like, which files have been added to our copy of the file tree?

diff -r ($home /tmp)"Vbin | grep *Only in /tmp/bin’
Only in /tmp/bin/rc: rcecho

3

This is useful for security purposes. From time to time we might check that a Plan 9 installation does not have
files altered by malicious programs or by user mistakes. If we process the outifft of comparing the original

file tree with the one that exists now, we can generate the commands needed to restore the tree to its original state.
Here we do this to our little file tree. Files that are only in the new tree, must be deleted to get back to our original
tree.

;. diff -r ($home /tmp)*bin >/tmp/diffs
;. grep "Only in /tmp/’ /tmp/diffs | sed -e 's/Only infrm/|’ -e ’s[: /|’
rm /tmp/bin/rc/rcecho

Files that are only in the old tree have probably been deleted in the new tree, assuming we did not create them in
the old one. We must copy them again.

;. d=/ust/nemo/bin
;grep 'Only in $d /tmp/diffs |
sed ’'s|Only in $d"/(.+): ("]+)[cp "$d"/\1/\2 /tmp/bin/\1]
cp /usr/nemo/bin/rc/d2h /tmp/bin/rc
cp /usr/nemo/bin/rc/h2d /tmp/bin/rc

In this command\l is the path for the file, relative to the directory being compared\ani the file name. We
have not use@home to keep the command as clear as feasible. To complete our job, we must undo any change to

-188 -

any file by coping files that differ.

grep diff ’ /tmp/diffs | sed 's/diff/cp/’
cp /usr/inemol/bin/rc/t+ tmp/bin/rc/t+

All this can be packaged into a script, that we might caditore

[gstore
#!/bin/rc

rfork e
if (1 ~ $#* 2){
echo usage $0 olddir newdir >[1=2]
exit usage
}
old=$1
new=%$2
diffs=/tmp/restore.$pid
diff -r $old $new >$diffs
grep "Only in "$new /tmp/diffs | sed -e 's|Only injrm|" -e 's|: |/|’
fromstr="Only in "*$old™'/(.+): ([*]+)
tostr="cp ""$oldVA\1N2 "$newNN\1’
grep "Only in "$old $diffs | sed -e 's|'"*$fromstr’|"*$tostr’|
grep "diff * $diffs | sed 's/diff/cp/’
rm $diffs
exit ”

And this is how we can use it.

; restore

rm /tmp/bin/rc/rcecho

cp /usr/nemo/bin/rc/d2h /tmp/bin/rc

cp /usr/nemo/bin/rc/h2d /tmp/bin/rc

cp /usr/inemol/bin/rc/t+ tmp/bin/rc/t+

; restorefrc after having seen what this is going to do!

We have a nice script, but pressibgletewhile the script runs may leave an unwanted temporary file.
; restore $home/bin /tmp/bin

Delete
;e /tmp
A1030.nemoacme omail.2558.body

ch6.ms restore.1425

’

To fix this problem, we need to install a note handler like we did before in C. The shell gives special treatment to
functions with namesighup , sigint , andsigalrm . A functionsighup is called byrc when it receives a
hangup note. The same happens feigint with respect to thenterrupt note andsigalrm for the

alarm note. Adding this to our script makes it remove the temporary file when the window is deldbediateis
pressed.

fn sigint { rm $diffs }
fn sighup { rm $diffs }

This must be done after definirggliffs

9.4. AWK

There is another tool is use extremely useful, which remains to be seen. It is a programming language called
AWK Awk is meant to process text files consisting of records with multiple fields. Most data in system and user
databases, and much data generated by commands looks like this. Consider the qugput of

-189 -

ps [sed 5g
nemo 1 0:00 0:00 1392K Await bns
nemo 2 1:09 0:00 0K Wakeme genrandom
nemo 3 0:00 0:00 0K Wakeme alarm
nemo 5 0:00 0:00 OK Wakeme rxmitproc
nemo 6 0:00 0:00 268K Pread factotum

We have multiple lines, which would be records for AWK. All the lines we see contain different parts carrying
different data, tabulated. In this case, each different part in a line is delimited by white space. For AWK, each part
would be a field. This is our first AWK program. It prints the user names for owners of processes running in this
system. Similar to what could be achieved by usiag .

ps [awk {print $1}
nemo
nemo

- ps|sed’s/. W
nemo
nemo

The program for AWK was given as its only argument, quoted to escape it from the shell. AWK executed the
program to process its standard input, because no file to process was given as an argument. In this case, the pro-
gram prints the first field for any line. As you can see, AWK is very handy to cut columns of files for further pro-
cessing. There is a command in most UNIX machines nacoed that does precisely this, but using AWK suf-

fices. If we sort the set of user names and remove duplicates, we can know who is using the machine.

;. ps [awk ‘{print $1}’ | sort -u
nemo
none

In general, an AWK program consists of a series of statements, of the form

pattern{ action}.

Each record is matched against fhesttern and theactionis executed for all records with a matching one. In our
program, there was no pattern. In this case, AWK executes the actiall foe records. Actions are programmed
using a syntax similar to C, using functions that are either built into AWK or defined by the user. The most com-
monly used one igrint , which prints its arguments.

In AWK we have some predefined variables and we can define our own ones. Variables can be strings, inte-
gers, floating point numbers, and arrays. As a convenience, AWK defines a new variable the first time you use it,
i.e., when you initialize it.

The predefined variabl®l is a string with the text from the first field. Because the action wi$drappears
is executed for a recorddl would be the first field of the record being processed. In our program, each time
print $1 is executed for a line$1 refers to the first field for that line. In the same w&p, is the second field
and so on. This is how we can list the names for the processes in our system.

. ps | awk {print $7}
genrandom

alarm

rxmitproc

factotum

fossil

It may be easier to use AWK to cut fields than using sed, because splitting a line into fields is a natural thing for
the former. White space between different fields might be repeated to tabulate the data, but AWK managed nicely
to identify field number 7.

-190 -

The predefined variabl80 represents the whole record. We can use it along with the variRlevhich
holds an integer with the record number, to number the lines in a file.

#!/bin/rc
awk '{ printf("%4d %s\n", NR, $0); } $*

We have used the AWK functigorintf , which works like the one in the C library. It provides more control for
the output format. Also, we pass the entire argument list to AWK, which would process the files given as argu-
ments or the standard input depending on how we call the script.

. number number
1 #!/bin/rc
2 awk '{ printf("%4d %s0, NR, $0); }' $*

In general, it is usual to wrap AWK programs using shell scripts. The input for AWK may be processed by other
shell commands, and the same might happen to its output.

To operate on arbitrary records, you may specify a pattern for an action. A pattern is a relational expression,
a regular expression, or a combination of both kinds od expressions. This examphRisgwint only records 3
to 5.

awk 'NR >= 3 && NR <=5 {print $0}’ /LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or

Here,NR >=3 && NR <= S5s a relational expression. It does and of two expressions. Only records with
NRbetween 3 and 5 match the pattern. As a reguiht is executed just for lines 3 through 5. Because syntax
is like in C, it is easy to get started. Just try. Printing the entire record$De.is so common, thgtrint prints
that by default. This is equivalent to the previous command.

;. awk 'NR >=3 && NR <= 5 {print}’ /LICENSE

Even more, the default action is to print the entire record. This is also equivalent to our command.
;. awk 'NR >=3 && NR <=5’ /LICENSE

By the way, in this particular case, usisgd might have been more simple.
sed -n 3,5p /LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or

’

Still, AWK may be preferred if more complex processing is needed, because it provides a full programming lan-
guage. For example, this prints only even lines and stops at line 6.

;awk 'NR%2 == 0 && NR <= 6’ /LICENSE
Lucent Public License, Version 1.02, reproduced below,

to redistribute (other than with the Plan 9 Operating System)

It is common to search for processes with a given name. We used grep for this task. But in some cases, unwanted
lines may get through

-191 -

;. ps/grep rio

nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 2602 0:00 0:00 248K Await rioban
nemo 277 0:00 0:00 1160K Pread rio
nemo 2607 0:00 0:00 248K Await brio
nemo 280 0:00 0:00 1160K Pread rio

We could filter them out using a bettgrep pattern.
ps | grep ‘rio%’

nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 277 0:00 0:00 1160K Pread rio
nemo 2607 0:00 0:00 248K Await brio
nemo 280 0:00 0:00 1160K Pread rio
;. ps/grep ’rio$’

nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 277 0:00 0:00 1160K Pread rio
nemo 280 0:00 0:00 1160K Pread rio

But AWK just knows how to split a line into fields.
;. ps|awk '$7 ~ /rio%/

nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 277 0:00 0:00 1160K Pread rio
nemo 280 0:00 0:00 1160K Pread rio

This AWK program uses a pattern that requires field number 7 to match the péatiefsi . As you know, by
default, the action is to print the matching record. The operatgields true when both arguments match. Any
argument can be a regular expression, enclosed between two slashes. The pattern we usedliegfufreld
number 7 to be justio , because we usetd and$ to requirerio to be right after thestart of the field, and
before theendof the field. As we said; and$ mean the start of the text being matched and its end. Whether the
text is just a field, a line, or the entire file, it depends on the program using the regexp.

It is easy now to list process pids foo that belong to usaremo.
ps [awk ‘$7 ~ /rio$/ && $1 ~ /‘nemo$/ {print $2}’

39
275
277

280

How do we kill broken processes? AWK may help.

;. ps lawk '$6 ~ /Broken/ {printf(“echo kill >/proc/%s/ctlO, $2);}’
echo kill >/proc/1010/ctl
echo kill >/proc/2602/ctl

The 6th field must bé&roken , and to kill the process we can wrik@ll to the process control file. The 2nd

field is the pid and can be used to generate the file path. Note that in this case the expression matched against the
6th field is just/Broken/ , which matches with any string containigoken . In this case, it suffices and we

do not need to use and$.

-192 -

Which one is the biggest process, in terms of memory consumption? The 6th field from the oupgut of
reports how much memory is using a process. We could use our known tools to answer this question. The argu-
ment+4r for sort asks for a sort of lines but starting in the field 4 as the sort key. This is a lexical sort, but it
suffices. Ther meansreversesort, to get biggest processes first. And we cansesk to print just the first line
and only the memory usage.

;. ps|sort +4r

nemo 3899 0:01 0:00 11844K Pread gs
nemo 18 0:00 0:00 9412K Sleep fossil
...and more fossils

nemo 33 0:00 0:00 1536K Sleep bns
nemo 39 0:09 0:33 1276K Rendez rio
nemo 278 0:00 0:00 1276K Rendez rio
nemo 275 0:02 0:14 1276K Pread rio
...and many others.

; ps|/sort +4r | sed 1q

nemo 3899 0:01 0:00 11844K Pread gs

;. ps[sort +4r | sed -e 's/.* ([0-9]+K).*/1/ -e 1q

11844K

We exploited that the memory usage field terminates in an upperk;as®l is preceded by a white space. This is
not perfect, but it works. We can improve this by using AWK. This is more simple and works better.

. ps[sort +4r | sed 1q | awk ‘{print $5}°
11844K

Thesed can be removed if we ask AWK to exit after printing the 5th field for the first record, because that is the
biggest one.

;. ps [sort +4r | awk ‘{print $5; exit}’
11844K

And we could get rid okort as well. We can define a variable in the AWK program to keep track of the maxi-
mum memory usage, and output that value after all the records have been processed. But we need to learn more
about AWK to achieve this.

To compute the maximum of a set of numbers, assuming one number per input line, we may set a ridiculous
low initial value for the maximum and update its value as we see a bigger value. It is better to take the first value
as the initial maximum, but let's forget about it. We can use two special patBEGIN, andEND The former
executes its actiobeforeprocessing any field from the input. The latter executes its aetfitan processing all the
input. Those are nice placeholders to put code that must be executed initially or at the end. For example, this
AWK program computes the total sum and average for a list of numbers.

seq 5000 | awk ’
;v BEGIN { sum=0.0}
o {sum+=$1)
;v END { print sum, sum/NR }

12502500 2500.5

Remember that, is printed by the shell, and not part of the AWK program. We have gsedto print some
numbers to test our script. And, as you can see, the syntax for actions is similar to that of C. But note that a state-
ment is also delimited by a newline or a closed brace, and we do not need to add semicolons to terminate them.
What did this program do? Before even processing the first line, the actiBEGIN was executed. This sets the
variablesum to 0.0 . Because the value is a floating point number, the variable has that type. Then, field after
field, the action without a pattern was executed, updasimg. At last, the action foENDprinted the outcome.

By dividing the number of records (i.e., of lines or numbers) we compute the average.

As an aside, it can be funny to note that there are many AWK programs with only an actiBE@iN.
That is a trick played to exploit this language to evaluate complex expressions from the shell. Another contender
for hoc.

-193 -

;. awk ‘BEGIN {print sqrt(2) * log(4.3)}’
2.06279

; awk '‘BEGIN {PI=3.1415926; print Pl * 3.7°2}’
43.0084

This program is closer to what we want to do to determine which process is the biggest one. It computes the maxi-
mum of a list of numbers.

;. Seq 5000 | awk’
BEGIN { max=0 }
{ if (max < $1)
0 max=$1

}
o END { print max }
gOOO Correct?

This time, the action for all the records in the input updates;, to keep track of the biggest value. Becaosax
was first used in a context requiring an integer (assigned 0), it is integer. Let’s try now our real task.

; pslawk’

. BEGIN { max=0}

o f if (max < $5)

0 max=$5

/
END { print max }

5412K Wrong! because it should have said...
i ps [sort +4r | awk {print $5; exit})’
11844K

What happens is thdt1844K is not bigger tha®412K. Not as a string.
. awk 'BEGIN { if ("11844K" > "9412K") print "bigger" }’

Watch out for this kind of mistake. It is common, as a side effect of AWK efforts to simplify things for you, by

trying to infer and declare variable types as you use them. We must force AWK to take the 5th field as a number,
and not as a string.

; pslawk’

;i BEGIN { max=0}

ao mem-= $5+0

5 if (max < mem)

N max=mem

/
END { print max }
11844

Adding 0 to $5 forced the (string) value i85 to be understood as a integer value. Therefor@yis now an inte-
ger with the numeric value from the 5th field. Where is tK? When converting the string to an integer, AWK
stopped when it found th&”. Therefore, this forced conversion has the nice side effect of getting rid of the final
letter after the memory size. It seems simple to compute the average process (memory) size, doesn't it? AWK lets
you do many things, easily.
;. pslawk’
;v BEGIN { tot=0}
{ tot += $5+0 }
END { print tot, tot/NR }

319956 2499.66

- 194 -

9.5. Processing data

Each semester, we must open student accounts to let them use the machines. This seems to be just the job for
AWK and a few shell commands, and that is the tool we use. We take the list for students in the weird format that
each semester the bureaucrats in the administration building invent just to keep us entertained. This format may
look like this list.
fist]

List of students in the random format for this semester

you only know the format when you see it.

2341|Rodolfo Martinez|Operating Systems|B|ESCET
6542|Joe Black|Operating Systems|B|ESCET
23467|Luis Ibafiez|Operating Systems|B|ESCET
23341|Ricardo Martinez|Operating Systems|B|ESCET
7653|José Prieto|Computer Networks|A|[ESCET

We want to write a program, callddst2usr that takes this list as its input and helps to open the student
accounts. But before doing anything, we must get rid of empty lines and the comments nicely placedigtier
in the original file.

;awk’

i /M { next }

o %/ { next}

" { print }

o list

2341|Rodolfo Martinez|Operating Systems|B|ESCET

6542|Joe Black|Operating Systems|B|ESCET

23467|Luis Ibafiez|Operating Systems|B|ESCET

23341|Ricardo Martinez|Operating Systems|B|ESCET

7653|José Prieto]Computer Networks|A[ESCET

There are several new things in this program. First, we have multiple patterns for input lines, for the first time.
The first pattern matches lines with an initial and the second matches empty lines. Both patterns are just a regu-
lar expression, which is a shorthand for matching it aga®@st This is equivalent to the first statement of our
program.

$0 ~ /"#/ {next}

Second, we have usetext to skip an input record. When a line matches a commentary line, AWK executes
next . This skips to the next input record, effectively throwing away the input line. But look at this other pro-
gram.

;oawk’

N { print }

i /M { next }

o %/ { next}

oo st

List of students in the random format for this semester
you only know the format when you see it.

It doesnotignore comments nor empty lines. AWK executes the statements in the order you wrote them. It reads
one record after another and executes, in order, all the statements with a matching pattern. Lines with comments
match the first and the third statement. But it does not help to skip tadgke input record once you printed it.
The same happens to empty lines.

Now that we know how to get rid of weird lines, we can proceed. To create accounts for all students in the

course in Operating Systems, group B, we must first select lines for that course and group. This semester, fields
are delimited by a vertical bar, the course field is the 3rd, and the group field is the 4th. This may help.

-195 -

;o awk -F"’

i /M { next)

o %/ {next}

i 83 ~/Operating Systems/ && $4 ~ /B/ { print $2 }
oo st

Rodolfo Martinez

Joe Black

Luis Ibanez

Ricardo Martinez

’

We had to tell AWK how fields are delimited using| , quoting it from the shell. This option sets the characters
used to delimit fields, i.e., the field delimiter. Although it admits as an argument a regular expression, saying just
| suffices for us now. We also had to match the 3rd and 4th fields against desired values, and print the student
name for matching records.

Our plan is a follows. We are going to assume that a progrdduser exists. If it does not, we can always
create it for our own purposes. Furthermore, we assume that we must give the desired user name and the full stu-
dent name as arguments to this program, like in

: adduser rmartinez Rodolfo Martinez

Because it is not clear how to do all this, we experiment using the shell before placing all the bits and pieces into
our list2usr shell script.

One way to invent a user name for each student is to pick the initial for the first name, and add the last
name. We can ussed for the job.

name="Luis Ibafiez’

echo $name | sed 's/()[* J+[J+()N112/
LIbanez
. name='José Martinez’
;. echo $name [sed 's/()["]+ J+(.HN112/
JMartinez

But the user name looks funny, we should translate to lower case and, to avoid problems for this user name when
used in UNIX, translate accented characters to their ascii equivalents. Admittedly, this works only for spanish
names, because other names might use different non-ascii characters and we wouldn’t be helping our UNIX sys-
tems.

echo Libafez | tr A-Z a-z | tr '[aéioun]’ ‘[aeioun]’
libanez

3

But the generated user name may be already taken by another user. If that is the case, we might try to take the
first name, and add the initial from the last name. If this user name is also already taken, we might try a few other
combinations, but we won'’t do it here.

. name='Luis Ibafiez’
;. echo $name | sed 's/(["]+)[]+(). N112/" |

o trA-Z a-z | tr [aéioun]’ ‘[aeioun]’
luisi

How do we now if a user name is taken? That depends on the system where the accounts are to be created. In gen-
eral, there is a text file on the system that lists user accounts. In Plan 9, thedfitdusers lists users known
to the file server machine. This is an example.

sed 4q /adm/users
adm:adm:adm:elf,sys
aeverlet:aeverlet:aeverlet:
agomez:agomez:agomez:
albertop:albertop::

The second field is the user name, according to the manual page for our file server priogsid). As a result,

- 196 -

this is how we can know if a user name can be used for a new user.

;grep -s]+ "$user™:’ /adm/users && echo $user exists
nemo exists
grep -s [J+:rim?:’ /adm/users && echo rjim exists

The flag-s asksgrep to remain silent, and only report the appropriate exits status, which is what we want. In
our little experiment, searching fé&user in the second field ofadm/users succeeds, as it could be expected.
On the contrary, there is miim known to our file server. That could be a valid user name to add.

There is still a little bit of a problem. User names that we add can no longer be used for new user names.
What we can do is to maintain our owrsers file, created initially by copyindadm/users , and adding our
own entry to this file each time we produce an output line to add a new user name.

We have all the pieces. Before discussing this any further, let's show the resulting script.
fist2usr

#!/bin/rc

rfork e

users=/tmp/list2usr.$pid

cat /adm/users > $users
fn sigint { rm $users } ; fn sighup { rm -f $users }

fn listusers {

awk -F|’
N {next}

"$/ {next}

$3 ~ /Operating Systems/ && $4 ~ /B/ {print $2 }
"

}

fn unamel {
echo $* | sed 's/()["]+ 1+(-HN\1\2/
}

fn uname2 {
echo $* | sed 's/([*]+)[]+(.).*\1\2/’
}

fn add {
if (grep -s "N[N:]+:\$1N: $users)
status=exist
if not {
echo $1:$1:$1: >>$users
echo adduser $*
status="

}

listusers $* | tr A-Z a-z | tr '[4éiouf] '[aeioun]’ |
while(name="{read}){
add {unamel $name} $name ||
add {uname2 $name} $name ||
echo '# cannot determine user name for $name

rm -f $users
exit”

We have defined several functions, instead of merging it all in a single, huge, command linestd$ers
function is our starting point. It encapsulates nicely the AWK program to list just the student names for our course
and group. The script arguments are given to the function, which passes them to AWK. The next couple of

-197 -

commands are our translations to use only lower-case ascii characters for user names.

The functionsunamel anduname2 encapsulate our two methods for generating a user name. They receive
the full student name and print the proposed user name. But we may need to try both if the first one yields an
existing user name. What we do is to read one line at a time the output from

listusers $* | tr A-Z a-z | tr '[4éi60A] '[aeioun]’

using awhile loop and theead command, which reads a single line from the input. Each line read is placed in
$name, to be processed in the body of tivhile . And now we can try to add a user using each method.

To try to add an account, we defined the functemd. It determines if the account exists as we saw. If it
does, it setstatus to a non-null value, which is taken as a failure by the one calling the function. Otherwise, it
sets a null status after printing the command to add the account, and adding a fake entydersuffile. In the
future, this user name will be considered to exist, even though it may not be in thadedlsers

Finally, note how the script catchegerrupt andhangup notes by defining two functions, to remove
the temporary file for the user list. Note also how we print a message when the program fails to determine a user
name for the new user. And this is it!

o list2usr list

adduser rmartinez rodolfo martinez
adduser jblack joe black

adduser libanez luis ibanez
adduser ricardom ricardo martinez

We admit that, depending on the number of students, it might be more trouble to write this program than to open
the accounts by hand. However,all semesters to follow, we can prepare the student accounts amazingly fast!
And there is another thing to take into account. Humans make mistakes, programs do not so as often. Using our
new tool we are not likely to make mistakes by adding an account with a duplicate user name.

After each semester, we must issue grades to students. Depending on the course, there are several separat
parts (e.g., problems in a exam) that contribute to the total grade. We can reuse a lot from our script to prepare a
text file where we can write down grades.
fist2gradesy

#!/bin/rc

rfork e

nquestions=3
fn listusers {

awk -F|"’

N {next}

%/ {next}

$3 ~ /Operating Systems/ && $4 ~ /B/ {print $2 }
L

}

listusers $* | awk ’
BEGIN { printf("%-30s\t", "Name");
for (i = 0; i <’$nguestions’; i++)
printf("Q-%d\t", i+1);
printf(“Total\n");

{ printf("%-30s\t", $0);
for (i = 0; i <’$nquestions’; i++)
printf("-\t", i+1);
printf("-\n");

exit”

Note how we integratefinquestions in the AWK program, by closing the quote for the program right before
it, and reopening it again. This program produces this output.

-198 -

list2grades list
Name Q-1 Q-2 Q-3 Total
Rodolfo Martinez - - - -
Joe Black - - - -
Luis Ibanez - - - -
Ricardo Martinez - - - -

We must just fill the blanks, with the grades. And of course, it does not pay to compute the final (total) grade by
hand. The resulting file may be processed using AWK for doing anything you want. You might send the grades
by email to students, by keeping their user names within the list. You might convert this into HTML and publish

it via your web server, or any other thing you see fit. Once the scripts are done after the first semesters, they can
be used forever.

And what happens when the bureaucrats change the format for the input list? You just have to tweak a little
bit listusers ~ , and it all will work. If this happens often, it might pay to pigtusers into a separate script
so that you do not need to edit all the scripts using it.

9.6. File systems

There are many other tools available. Perhaps surprisingly (or not?) they are just file servers. As wéleaw, a
serveris just a process serving files. In Plan 9, a file server serves a file tree to provide some service. The tree is
implemented by a particular data organization, perhaps just kept in the memory of the file server process. This
data organization used to serve files is known &igeasystem Before reading this book, you might think that a

file system is just some way to organize files in a disk. Now you know that it does not need to be the case. In
many cases, the program that understands (e.g., serves) a particular file system is also called a file system, perhaps
confusingly. But that is just to avoid sayifithe file server program that understands the file systém...

All device drivers, listed in section 3 of the manual, provide their interface through the file tree they serve.
Many device drivers correspond to real, hardware, devices. Others provide a particular service, implemented with
just software. But in any case, as you saw before, it is a matter of knowing which files provide the interface for the
device of interest, and how to use them. The same idea is applied for many other cases. Many tools in Plan 9,
listed in section 4 of the manual, adopt the form of a file server.

For example, various archive formats are understood by programfsitkefs (which understands tape
archives withtar(1) format),fs/zipfs (which understands ZIP files), etc. Consider the tar file with music that
we created some time ago,

tar tf /tmp/music.tar
alanparsons/
alanparsons/irobot.mp3
alanparsons/whatgoesup.mp3
pausini/
pausini/trateilmare.mp3
supertramp/
supertramp/logical.mp3

We can usdarfs to browse through the archive as if files were already extracted. The prdgrésn reads
the archive and provides a (read-only) file system that reflects the contents in the archive. It mounts itself by
default at/n/tapefs , but we may ask the program to mount itself at a different path usingmhaption.

;. fs/tarfs -m /n/tar /tmp/music.tar
;. ns|/grep tar
mount -c '#|/datal’ /n/tar

The devicet| is thepipg3) device. Pipes are created by mounting this device (this is pipaf2) does). The file
'#|/datal’ is an end for a pipe, that was mountedtay at/n/tar . At the other end of the pip¢arfs is
speaking 9P, to supply the file tree for the archive that we have mounted.

The file tree atn/tar ~ permits browsing the files in the archive, and doing anything with them (other than
writing or modifying the file tree).

- 199 -

lc /n/tar
alanparsons pausini supertramp
;. lc /n/tar/alanparsons
irobot.mp3 whatgoesup.mp3

; cp /n/tar/alanparsons/irobot.mp3 /tmp

The program terminates itself when its file tree is finally unmounted.

ps [grep tarfs
nemo 769 0:00 0:00 88K Pread tarfs
. unmount /n/tar
;. ps/grep tarfs

’

The shell along with the many commands that operate on files represent a useful toolbox to do things. Even more
so if you consider the various file servers that are included in the system.

Imagine that you have an audio CD and want to store its songs, in MP3 formatratsic/album
The prograncdfs provides a file tree to operate on CDROMSs. After inserting an audio CD in the CD reader,
accessed through the fildev/sdD0O , we can list its contents amnnt/cd

cdfs -d /dev/sdD0O
. le /mnt/cd
a000 a002 a004 a006 a008 a010
a001 a003 a005 a007 a009 ctl

Here, filesa000 to a010 correspond taudio tracks in the CD. We can convert each file to MP3 using a tool
like mp3enc.

;. for (track in /mnt/cd/a*) {
N mp3enc $track /n/music/album/$track.mp3

jj.all tracks being encoded in MP3...

It happens thatdfs knows how to (re)write CDs. This example, taken from ¢dég4) manual page, shows how
to duplicate an audio CD.

First, insert the source audio CD.

. cdfs -d /dev/sdD0O

;. mkdir tmp/songs

;. Ccp /mnt/cd/a* tmp/songs
unmount /mnt/cd

Now, insert a blank CD.

. cdfs -d /dev/sdD0O

;. le /mnt/cd

;o wa wd

;. Cp /tmp/songs/* /mnt/cd/wa to copy songs as audio tracks
rm /mnt/cd/wa to fixate the disk contents
unmount /mnt/cd

For a blank CDcdfs presents two directories in its file treera andwd. Files copied intova are burned as
audio tracks. File copied intawd are burned as data tracks. Removing either directory fixates the disk, closing the
disk table of contents.

If the disk is re-writable, and had some data in it, we could even get rid of the previous contents by sweep-
ing through the whole disk blanking it. It would be as new (a little bit more thinner, admittedly).

;. echo blank >/mnt/cd/ct!
blanking in progress...

When you know that it will not be the last time you will be doing something, writing a small shell script will save
time in the future. Copying a CD seems to be the case for a popular task.

- 200 -

#!/bin/rc
rfork ne
fn prompt { echo -n $1 ; read }

prompt insert the source CD

cdfs -d /dev/sdDO || exit failed

if (! test -e /mnt/cd/a*) {
echo not an audio CD
exit failed

}

echo copying CD contents...
mkdir /tmp/songs.$pid

cp /mnt/cd/a* tmp/songs.$pid
unmount /mnt/cd

prompt insert a blank CD

cdfs -d /dev/sdDO || exit failed

if (! test -e /mnt/cd/wa) {
echo not a blank CD
exit failed

}

echo burning...

cp /tmp/songs.$pid/* /mnt/cd/wa
echo fixating...

rm /mnt/cd/wa

rm -r /tmp/songs.$pid

echo eject >/mnt/cd/ctl

unmount /mnt/cd

The script copies a lot of data &mp/songs.$pid . Hitting Delete might leave those files there by
mistake. One fix would be to definesagint function. However, provided that machines have plenty of mem-
ory, there is another file system that might help. The programfs supplies a read/write file system that is
kept in-memory. It uses dynamic memory to keep the data for the files created in its fileRegefs mounts
itself by default atftmp . So, adding a line

ramfs -c

before usingtmp in the script will ensure that no files are left by mistakefihome/tmp (which is what is
mounted attmp by convention).

Like most other file servers listed in section 4 of the maneamfs accepts flagsabc to mount itself
after, before and allowing filecreation Two other popular options aren dir, to choose where to mount its file
tree, ands srvfile, to askramfs to post a file afsrv , for mounting it later. Using these flags, we may able to
compile programs in directories where we do not have permission to write.

;. ramfs -bc -m /sys/src/cmd
;. cd /sys/src/emd

. 8c -FVWw cat.c

;. 8l-o08.catcat.8

i lc8.*cat*

8.cat cat.8 cat.c

. rm8.catcat.8

After mountingramfs with -bc at/sys/src/cmd , new files created in this directory will be created in the

file tree served byamfs , and not in the reakys/src/cmd . The compiler and the loader will be able to cre-

ate their output files, and we will neither require permission to write in that directory, nor leave unwanted object
files there.

- 201 -

The important point here is not how to copy a CD, or how to tesafs . The important thing is to note

that there are many different programs that allow you to use devices and to do things through a file interface.

When undertaking a particular task, it will prove to be useful to know which file system tools are available.

Browsing through the system manual, just to see which things are available, will prove to be an invaluable help,
to save time, in the future.

Problems

1 Write a script that copies all the files $home/www terminated inhtm to files terminated inhtml

2 Write a script that edits the HTML in those files to refer alwayditonl files and not tahtm files.

3 Write a script that checks that URLs in your web pages are not broken. Usgéhecommand to probe
your links.

4 Write a script to replace duplicate empty lines with a single empty line.

5 Write a script to generate (empty) C function definitions from text containing the function prototypes.

6 Do the opposite. Generate C function prototypes from function definitions.

7 Write a script to alert you by e-mail when there are new messages in a web discussion group. The mail must
contain a portion of the relevant text and a link to jump to the relevant web page.

8 Hint: The progranhtmlfmt may be of help.

9 Improve the scripts resulting from answers to problems for the last chapter using regular expressions.

10— Concurrency

10.1. Synchronization

In the discussion offork that we had time ago, we did not pay attention to what would happen when a new
process is created sharing the parent's memory. A call like

rfork(RFPROC|RFMEM)

is in effect creating a new flow of control within our program. This is not new, but what may be new is the nasty
effects that this might have if we are not careful enough.

We warned you that, in general, when more than one process is sharing some data, there may be race condi-
tions. You could see how two processes updating the same file could lead to very different contents in the file
after both processes complete, depending on when they did their updates with respect to each other. Sharing mem-
ory is not different.

What happens is that the idea that you have of sequential execution for your programsotatedworld is
no longer true. We saw that when more than one process was trying to update the same file, the resulting file con-
tents might differ from one run to another. It all depends on when did each process change the data. And this is
what we called aace condition. Consider this program.

#include <u.h>
#include <libc.h>

int cnt;

void
main(int, char*[])

{

int i;

if (rfork(RFPROC|RFMEM|RFNOWAIT) < 0)
sysfatal(“fork: %r");

for (i=0;i<2;i++)
cnt++;

print(“cnt is %d\n", cnt);

exits(nil);

}

It creates a child process, and each one of the processes increment a counter twice. The charast iecause

the call torfork uses theRFMEMIlag, which causes all the data to be shared between parent and child. Note
that onlycnt , which is a global, is shared. The local variabldéives on the stack which is private, as it should
be.

Executing the program yields this output.

. 8.rincr
cntis 2
cntis 4

We now declare an integer local varialdl®; , and replace the body of the loop with this code, equivalent to what
we were doing.

loc = cnt;
loc++;
cnt = loc;

It turns out that this is hovent++ is done, by copying the memory value into a temporary variable (kept at a

- 204 -

register), then incrementing the register, and finally updating the memory location for the variable with the incre-
mented value. The result for this version of the program remains the same.

8.rincr
cntis 2
cntis 4

’

But let’s change a little bit more the program. Now we replace the body of the loop with these statements.

loc = cnt;
sleep(1);
loc++;

cnt = loc;

The call tosleep does not change the meaning of the program, i.e., what it does. Howetdegsithange the
result! The call tesleep exposed a race condition present in all the versions of the program.

. 8.rincr
cntis 2
cntis 2

Both processes execute one instruction after another, but you do not know when the operating system (or any
external event) will move one process out of the processor or move it back to it. The result is that we do not know
how the two sequences of instructions (one for each process), witidsgedin time. Despite having just one
processor that executes only a sequence of instructions, any merge of instructions from the first and the second
process is feasible. Such a merge is usually calledtanleaving.

Perhaps one process executes all of its statements, and then the second. This hapgden tdoibye in all
but the last version of the program. On the other hand, perhaps one process executes some instructions, and ther
the other, and so on. Figure 10.1 shows the interleaving of statements that resulted from our last modification to
the program, along with the values for the two local variabdes, and the globatnt . The initial call torfork
is not shown. The statements corresponding to the loop itself are not shown either.

What you see is that something happertsle one process is happily incrementing the variable, by copying
the global counter to its local, incrementing the local, and copying back the local to the shared counter, While one
process is performing its increment, the other process gets in the way. In the sequence of statements

loc = cnt;
loc++;
cnt = loc;

we assume that right after the the first lile¢ has the value that is kept in the shared variable. We further
assume that when we execute the last line, the global vagablenas the value it had when we executed the first
line.

That is no longer true. Because there is another process that might atréngehile we are doing some-
thing else. The net effect in this case is that we lose increments. The counter should end up with a value of 4. But
it has the value 2 at the end. The same would happen if the interleaving had been like follows.

1 Process 1: Consult the variable
Process 2: Consult the variable
Process 1: Increment
Process 2: Increment
Process 1: Update the variable
Process 2: Update the variable

This interleaving also loses increments. This is because of the race condition resulting from ushmar¢aent
in two different processes without taking any precaution.

Why did our last program exhibit the race condition but others did not? Because cd#ieyg puts the
process to sleep, in the blocked state, and the systearydikely to let the other process run while we sleep. We
are forcing a context switch at the place where we sldep . Nevertheless, the previous versions for the

o OB WN

- 205 -

Parent Child
loc =cnt
sleep
loc =cnt
sleep
loc++
cnt =loc
loc =cnt
sleep
loc++
cnt =loc
loc =cnt
sleep
loc++
cnt =loc
loc =cnt
sleep
loc++
cnt =loc
loc =cnt
sleep
print
print

Figure 10.1:One interleaving of statements for the two processes (last version of the program).

program are broken as well. We do not know if the system is going to decide to switch from one process to
another in the middle of our loop. What happened is that in our case, the system did not switch. It was not too
probable to have a context switch right in the middle, but it could happen.

Instructions are said to executtomically, because one instruction is not interrupted in the middle to do
something else. Interrupts happen at the end of instructions, but not in the middle. Howevecnevenis
implemented using several instructions, along the lines of our late versions for the program. This means that
another process may get in the way, even in the middle of somethingrike- . The same applies i6 condi-
tions and to any other statement.

What we need is some way synchronizemultiple processes. That is, to arrange for multiple processes to
agree regarding when is a good time to do particular operations. In the rest of this chapter, and in the following
one, we are going to explore some abstractions provided by Plan 9 that can be used to synchronize processes. We
are going to focus on synchronizing processes that share memory. When they do not share memory, pipes are
excellent synchronization means, and you have already used them.

- 206 -

10.2. Locks

How do we solve the problem? The race condition happens because more than one process may simultaneously
use a shared resource, i.e. the global counter. This is what breaks the assumptiot tliites not change
between lines (1) and (3) in

Q) loc = cnt;
(2) loc++;
3) cnt = loc;

Furthermore, the reason why more than one process magntissimultaneously is because this block of code is
not atomic It is not a single instruction, which means that in the middle of the block there may be a context
switch, and the other process may chaage or consult it while we are in the middle of a change.

On the contrary, the executions for the first two versions of our program belasvidhis block of code
was atomic. It just happen that one process executed the problematic code, and then the other. The code was exe-
cuted without being interrupted by the other process in the middle of the updatatfor And the net effect is
that the program worked! We now know that we were just lucky, because there could have been a context switch
in the middle. But the point is that when the block of code behaves as an atomic instruction, there are no races,
and the program behaves nicely.

Parent Child Parent Child
cnt++ cnt++
cnt++ cnt++

(@ (b)
Figure 10.2:Incrementing a shared counter using an atomic increment operation. No races.

Why is this so? Consider our two processes trying to increment the global counter, as shown in figure 10.2.
Imagine also thatnt++ was a single instruction. One of the two processes is going to exext#te before the
other. It could happen what figure 10.2 (a) shows, or what is shown in 10.2 (b). There is no other case. As we are
assuming that this is an atomic (non divisible) instruction, the increment is performed correctly. There can be no
context switch in the middle. Now, when the other process executestits , it finds cnt already incremented,
and no increment is missed. There is no race. The only two possibilities are those depicted in figure 10.2.

Of course, we do not know the order in which increments are going to be made. Perhaps the parent in our
program does its two increments, and then the child, or perhaps the other way around, or perhaps in some inter-
leaved way. No matter the order, the program will yield the expected result if the increments are atomic, as we
just discussed.

The code where we are using a shared resource, which poses problems when not executed atomically, is
called acritical region. Itis just a piece of code accessing a shared resource. A context switch while executing
within the critical region may be a problem. More precisely, the problem is not having a context switch, but
switching to any other process that might also use or change the shared resource. For example, it does not matter
if while we are incrementing our counter, Acme runs for a while. Acme does not interfere because we are not
sharing our counter with it. This is the last program, with the critical region shown inside a box.

- 207 -

mncr2.c 1]
#include <u.h>

#include <libc.h>
int cnt;

void

main(int, char*[])

{
int i;
int loc;

if (rfork(RFPROC|RFMEM|RFNOWAIT) < 0)
sysfatal(“fork: %r");
for (i=0;i<2;i++{
loc = cnt;
sleep(1);
loc++;
cnt = loc;
}
print(“cnt is %d\n", cnt);
exits(nil);

}

Given our critical region, If we could guarantee that at most one process is executing inside it, there would be no
race conditions. The reason is that the region would appear to be atomic, at least with respect to the processes try-
ing to execute it. There could be any number of context switches while executing the region, but no other process
would be allowed to enter it until the one executing it does leave the region. Thus, only one process would be
using the shared resource at a given time and that is why there would be no races.

Guaranteeing that no more than one process is executing code within the critical region is called achieving
mutual exclusion because one process executing within the region excludes any other one from executing inside
(when there is mutual exclusion).

How can we achieve mutual exclusion for our critical region? The idea is that when a process is about to
enter the critical region, it must wait until it is sure that nobody else is executing code inside it. Only in that case it
may proceed. To achieve this we need new abstractions.

A lock is a boolean variable (or an integer used as a boolean) used to indicate if a critical region is occupied
or not. A process entering the critical region sets the lock to true, and resets the lock to false only after leaving the
region. To enter the region, a process must either find the lock set to false or wait until it becomes false, otherwise
there would be more than one process executing within the critical region and we would have race conditions.

The intuition is that the lock is a variable that is useddck a resource (the region). A process wanting to
use the shared resource only does so after locking it. After using the resource, the process unlocks it. While the
resource is locked, nobody else will be able to lock it and use it.

Using locks, we could protect our critical region by declaririgpak variable,cntlck , callinglock on it
(to set the lock) before entering the critical region, and callintpck on it (to release the lock) after leaving the
region. By initializing the variable to zero, the lock is initially released (remember that globals are initialized to
zero by default).

;. sig lock unlock
void lock(Lock *1)
void unlock(Lock *I)

The resulting program is shown next.

- 208 -

fock.co
#include <u.h>
#include <libc.h>

int cnt;
Lock cntlck;
void

main(int, char*[])

{

int i;

if (rfork(RFPROC|RFMEM|RFNOWAIT) < 0)
sysfatal(“fork: %r");
for (i=0;i<2;i++{
lock(&cntlck);
cnt++;
unlock(&cntlck);
}

print(“cnt is %d\n", cnt);
exits(nil);

}

Just to make it more clear, we can replaoét+ with

loc = cnt;
sleep(1);
loc++;

cnt = loc;

and the program will in any case work as expected. Each process would loop and do its two increments, without
interference from the other process.

When our two processes try to execute the critical region, one of them is going to execute
lock(&cntlck) first. That one wins and gains the lock. The region is now locked. When the second process
callslock(&cntlck) it finds the lock set, and waits inside the functiock until the lock is released and can
be set again. The net effect is that we achieve mutual exclusion for our critical region.

Note that the output from the program may still be the same than that of our first two versions, but those
versions were incorrect. They are poltergeists, awaiting for the worst time to happen. When you do not expect
them to misbehave, they would miss an increment, and the program with the race will fail in a mysterious way
that you would have to debug. That is not fun.

By the way, did we lie? We said that locks are boolean variables, but we declailekl as a structure
Lock . This is howLock is defined inlibc.h

typedef
struct Lock {

int val;
} Lock;

The lock is also a shared variable. It would not make sense to give each process its own lock. The lock is used to
synchronize both processes, to make them agree upon when is it safe to do something. Therefore, it must be
shared. That means that if you write two C functions for implemertioy andunlock , they would have race
conditions!

The implementation founlock is simple, it setd.ock.val to false. The implementation fdock is
more delicate. It is made in assembly language to use a single machine instruction capable of consulting the lock
and modifying it, all that within the same instruction. That is reasonable. If we do not both consult the lock (to
see if it is set) and update it within an atomic instruction, there would be race conditions. There are several kinds
of test-and-setinstructions, that test a variable for a value but also modify it. A famous one is precisely called
TAS, or test and set.

- 209 -

Using TAS, here is a description of how to implemenibak function.

loop:
MOVL lock, AO put address of lock in register AO
TAS (A0) test-and-set word at memory address in AO
BNE loop if the word was set, continue the loop
RTS return otherwise

To emphasize it even more, the key point why this works at all is becB&Saés atomic. It puts a non-zero value
at the address for the lock and sets the processor flag to reflect if the previous value was not-zero or was zero.

In this loop, if a process is trying to set the lock and finds that it wasTs®g will set an already set lock
(store 1 in the lock that already was 1), and that operation would be harmless. In thi$A8sequld report that
the lock was set, and the process would be held in the loop waiting for the lock to be released. On the other hand,
if the process trying to set the lock execulesS while the lock was not set, this instruction will both set the lock
and report that it was clear. When more than one processochl) , one of them is going to ruiAS first.
That one wins.

To play with locks a little bit, we are going to implement a tiny program. This program has two processes.
One of them will always try to increment a counter. The other, will be trying to decrement it. However, we do not
allow the counter to be negative. If the process decrementing the counter finds that the value is zero, it will just try
again later. Once per second, one of the processes prints the counter value, to let us see what is happening.

In the program, we print iloldface statements that are part of a critical region. As you can see, any part of
the program wherent is used is a critical region. Furthermore, note that guém is in the critical region if it
is printingcnt , because we do not waont to change in the middle of a print.
mnt.c

#include <u.h>

#include <libc.h>

int cnt;
Lock cntlck;
void

main(int, char*[])

{

long last, now;

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){
case -1:
sysfatal(“fork: %r");
case 0:
last = time(nil);
for(;){
lock(&cntlck);
assert(cnt >= 0);
cnt++;
unlock(&cntlck);
now = time(nil);

if (now - last >= 1){
lock(&cntlck);
print(“cnt= %d\n", cnt);
unlock(&cntlck);
last = now;

- 210 -

default:
for(;){
lock(&cntlck);
assert(cnt >= 0);
if (cnt > 0)
cnt--;
unlock(&cntlck);

}

Also, in the parent process, both the checkdot>0 and thecnt-- must be part of the same critical region.
Otherwise, the other process might have charmgdbetween théf and its body.

The idea is simple. If you want to be sure that no other process is even touching the shared resource while
you are doing something, you must provide mutual exclusion for your critical region. As you see, one way is to
use aLock along the shared resource, to lock it. An example execution follows.

. 8.cent
cnt= 2043
cnt=1
cnt=1
cnt=0
cnt= 4341
cnt=1
cnt= 2808
cnt=0
cnt=1
cnt= 1400
cnt=1

The value moves in bursts, up as the child manages to increment it, and down when the parent manages to decre-
ment it many times. The value printed waswvhen the child finds a zero counter, increments it, and prints its
value. The value printed is zero when, after the parent increments the counter, the child manages to decrement it
before the parent prints its value.

It is very important to maintain critical regions as small as possible. If a process keeps a resource locked
most of the time, other processes will experience many delays while trying to acquire the resource. Or even worse,
if we are not careful, it may be that a processiéverable to acquire a lock it needs, because it always finds the
resource locked. Look at this variant of our last program, that wecoé?l .

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){
case O:
last = time(nil);
for(;;X{
lock(&cntlck);
assert(cnt >= 0);
cnt++;
print("%d\n", cnt);
unlock(&cntlck);

default:
for(;;{

lock(&cntlck);
assert(cnt >= 0);
if (cnt > 0)

cnt--;
print("%d\n", cnt);
unlock(&cntlck);

}

Now look at this:

-211 -

8.cnt? [grep -v O
and no number is ever shown!

We askedyrep to print only lines that daot contain a0. It seems that all lines in the output report a zero value
for cnt . Is it that the child process is not executing? We can use the debugger to print the stack for the child.

. ps/[grep 8.cnt2

nemo 5153 0:00 0:01 28K Pwrite 8.cnt2

nemo 5155 0:00 0:00 28K Sleep 8.cnt2
acid 5155

}proc/5155/text:386 plan 9 executable

[sysllib/acid/port

[sysllib/acid/386

acid: stk()

sleep()+0x7 /sys/src/libc/9syscall/sleep.s:5
lock(lk=0x702c)+0x47 /sys/src/libc/port/lock.c:16
main()+0x90 /usr/nemo/9intro/cnt2.c:19
_main+0x31 /sys/src/libc/386/main9.s:16

acid:

The child process is always trying to lock the resource, inkide() ! What happens is that the parent is hold-

ing the lock almost at all times. The parent only releases the lock for a very brief time, between the end of an iter-
ation and the beginning of the next iteration. Only if during this time there is a context switch, and the child is
allowed to run, will the child be able to acquire the lock. But it seems that in our case the system always decides
to let the child run while the parent is holding the lock.

This is calledstarvation. A process may never be able to acquire a resource, and it will starve to death. It
can be understood that this may happen to our program, because only for a very little fraction of time the lock is
released by the parent. The most probable thing is that once a process gets the lock, the other one will never be
able to acquire it.

Look at the stack trace shown above. Did you notice thekt callssleep ? You know that the system
gives some processor time to each process, in turns. If the implementatilmciorwas the one we presented
before in assembly language, we would be wasting a lot of processor time. Figure 10.3 depicts the execution for
our two processes, assuming thatk is implemented as we told before. In the figure, a solid line represents a
process that is running, in the processor. A dotted line represents a process that is ready to run, but is not running
in the processor. The figure shows how the system gives some time to each process for running, in turns.

Pare Run. o Rdy % Rdy ﬂ(}&
unlock
lock
Child....... Rdy. _Rﬁ Rdy. ~___Run.___ Rdy.
callslock , which spins around trying to acquire it.

Figure 10.3: Two processes using a shared resource protected by a spin lock.

Initially, the parent call$ock , and acquires the lock because it was initially released. Later, the parent pro-
cess releases the lock by a callunlock , but it quickly callslock again, and re-acquires the lock. Now it is
the time for the child process to run. This poor process tatls , but you know what happens. The routine can-
not acquire the lock, which is held by the parent process. Therefore, it waits in its loop daiBitp try to gain
the lock. That is all this process would do while it is allowed to remain running. The very thick line in the figure
represents the process executing this while, spinning around desperately hogiAgtorsucceed and obtain the
lock. Because of this, this kind of lock is calledpin lock.

-212 -

One problem with this execution, as you already know, is that the child suffers starvation, and is very likely
to never acquire its lock. This can be solved by trying to hold locks for the least time as feasible, unlike we are
doing in our program. The other problem that you may see is that the chwidssngprocessor time. When the
child callslock , and finds that the lock was held and it cannot acquire it, it is pointless to keep on trying to
acquire it. Unless the child leaves the processor, and the process holding the lock is able to run, nobody is going
to release the lock. Therefore, it is much better to let other processes run instead of insisting. This may give the
one holding the lock a chance to release it. And that is better for us, because we want to acquire it.

In the actual implementation ¢édck in Plan 9, wherock finds that the lock is held and cannot be set, it
callssleep . This moves the process out of the processor, while it is blocked during the sleep. Hopefully, after
sleeping a little bit, the lock will be already released. And, at the very least, we will not be wasting processor time
spinning around insidéock without any hope of acquiring the lock before leaving the processor. Figure 10.4
depicts the same scenario for our two processes, but showing what happeriecihetallssleep . Compare it
with the previous one.

Parent Run, Rdy%j@%ﬁ
unlock
lock
Child ... Rdy. Rung Blk. Rdy. W Blk_ Rdy.
No luck. Callssleep

callslock , which callssleep this time

Time

Figure 10.4:Same scenario, but using a lock that calls sleep to save processor time.

One last remark. Because of the calsteep , Plan 9 locks are not real spin locks. They do not spin around
in a while all the time. As you now know, they calleep(0) , just to abandon the processor and let others run
if the lock was held. However, because they are very similar, and loop around, many people refer to them as spin
locks.

10.3. Queueing locks

How can avoid starvation in our program? The code for both processes was very similar, and had a nice symme-
try. However, the execution was not fair. At least for the child process. There is a different kind of lock (yet
another abstraction) that may be of help.

A queueing lockis a lock like the ones we know. It works in a similar way. But unlike a spin lock, a queue-
ing lock uses a queue to assign the lock to processes that want to acquire it. The data type for thiQlock is
and the functions for acquiring and releasing the lockggwek andqunlock .

sig glock qunlock
void glock(QLock *I)
void qunlock(QLock *I)

When a process callfock , it acquires the lock if the lock is released. However, if the lock is held and cannot
be acquired yet, the process is put in a queue of processes waiting for the lock. When the lock is released, the first
process waiting in queue for the lock is the one that acquires it.

There is ahugedifference betweehocks andQLocks because of the queue used to wait for the lock.
First, a process is not kept spinning around waiting for a lock. It will be waiting, but blocked, sitting in the queue
of waiting processes. Second, the lock is assigned to processes in a very fair way. The first process that entered
the queue to wait for the lock would be the first to acquire it after the lock is released. Because of both reasons, it

-213 -

is always a good idea to usglocks instead ofLocks . The spin locks are meant for tiny critical regions with
just a few instructions. For example, the data structure used to implen@@mek is protected by using bock .
Such spin lock is held just for a very short time, while updating@h@®ck during a call toglock or qunlock

Our (in)famous program follows, but using queueing locks this time.

#include <u.h>
#include <libc.h>

int cnt;
QLock cntlck;
void

main(int, char*[])

{

long last, now;

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){
case -1:
sysfatal(“fork: %r");

case 0:

last = time(nil);

for(;){
glock(&cntlck);
assert(cnt >= 0);
cnt++;
print("%d\n", cnt);
qunlock(&cntlck);

default:
for(;){
glock(&cntlck);
assert(cnt >= 0);
if (cnt > 0)
cnt--;
print("%d\n", cnt);
qunlock(&cntlck);

}

Note the huge difference in behavior. An execution for this program follows. As you can see, this time, both pro-
cesses take turns. This happens because of the queue. The lock is assigned in a very fair way, and both processe
get a chance to do their job.

8.qcnt

OrRrPORFrOOoO-"

To do something more useful, we are going to implement a tool to update ticker-tape panels at an airport. This
program is going to read lines from standard input. When a new message must be displayed at the airport panels,
the user is supposed to type the message in the keyboard and press return.

Once a new message has been read, all the panels must be updated to display it instead of the old one.
Because updating a panel is a very slow operation, we do not want to use a loop to update each one in turn.
Instead, we create one process per panel, as shown in figure 10.5.

- 214 -

Figure 10.5:Process structure for the ticker-tape panels application for the airport.

The parent process will be the one reading from the input. After reading a new message, it will increment a
version numbefor the message along with the message text itself. The panel processes will be polling the version
number, to see if their messages are out of date. If they are, they will just write the new message to their respec-
tive panels, and record the version for the message. This is our data structure.

typedef struct Msg Msg;
struct Msg {

QLock Ick; /I to protect the other fields
char* text; /I for the message
ulong vers; /I for the message

h

Msg msg;

The code for the message reader is as follows. It works only when reading from the terminal, because it is using
justread to read a line from the input.

void
reader(void)

char buf[512];

int nr;
for(;;{
nr = read(0, buf, sizeof(buf)-1);
if (nr <= 0)
break;
buf[nr] = 0;

glock(&msg.lck);
free(msg.text);
msg.text = strdup(buf);
msg.vers++;
qunlock(&msg.lck);

}

exiting = 1;

exits(nil);

}

The critical region, updating the message text and its version, is protected @y tuk kept atmsg.lck . This
lock is kept withinmsg because it is used to protect it. If the program grows and there are more data structures,
there will be no doubt regarding what data structure is protectisg.Ick

-215 -

Each panel process will be runningpanelproc function, and receive a file descriptor that can be used to
write a message to the file representing the panel.

void
panelproc(int fd)
{
ulong lastvers = -1;
do {
glock(&msg.Ick);
if(msg.text != nil && lastvers = msg.vers){
write(fd, msg.text, strlen(msg.text));
lastvers = msg.vers;
}
qunlock(&msg.lck);
sleep(5 * 1000);
} while(lexiting);
fprint(2, "panel exiting\n");
exits(nil);
}

The locallastvers keeps the version for the message shown at the panel. Basfatiglproc loops and,

once each 5 seconds, checks oungg.vers changed. If it did, the new text for the message is written to the
panel. The initial value folastvers is just a kludge to be sure that the message is updated the very first time
(in that case, there is no previous version). Note how the critical region includes both the checks in the condition
of theif and the statements used to acaasg in the body.

Before discussing other details of this program, let's see how the whole program looks like.

#include <u.h>
#include <libc.h>

typedef struct Msg Msg;
struct Msg {

QLock Ick; /I to protect the other fields from races
char* text; /I for the message
ulong vers; /I for the message

h

int exiting;

Msg msg;

void

reader(void)

{
char buf[512];
int nr;

for(;){
nr = read(0, buf, sizeof(buf)-1);
if (nr <=0)

break;

buf[nr] = 0;
glock(&msg.Ick);
free(msg.text);
msg.text = strdup(buf);
msg.vers++;
qunlock(&msg.lck);

}

exiting = 1;

exits(nil);

- 216 -

void
panelproc(int fd)
{

ulong lastvers = -1;

while(lexiting){
glock(&msg.Ick);
if(msg.text != nil && lastvers != msg.vers){
write(fd, msg.text, strlen(msg.text));
lastvers = msg.vers;

}
qunlock(&msg.lck);

sleep(5 * 1000);

}
fprint(2, "panel exiting\n");
exits(nil);

}
enum { Npanels = 3 };

void
main(int, char*[])

{

int i;

for (i = 0; i < Npanels; i++)
if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)
panelproc(1);
reader();
[* does not return */

}

It creates one process per panel, and then executeedder code using the parent process. To test the pro-
gram, we used the standard output as the file descriptor to write to each one of the panels.

When a program is built using multiple processes, it is important to pay attention to how the program is
started and how is it going to terminate. In general, it is best if the program works no matter the order in which
processes are started. Otherwise, initialization for the program will be more delicate, and may fail mysteriously if
you make a mistake regarding the order in which processes are started. Furthermore, you do not know how fast
they are going to run. If you require certain order for the starting up of processes, you must use a synchronization
tool to guarantee that such order is met.

For example, ganelproc should not write a message to its paheforethere is at least one message to
print. All panelprocs should be waiting, silently, untidleader has got the chance of reading the first mes-
sage and updating the data structure. The program does so by checkingdhaéxt is not nil in
panelproc before even looking at the message. Tingg.text will be a null value until the reader initializes
it for the first time. As a result, if we start the panel processes after starting the reader, the program will still
work.

Termination is also a delicate thing. Now that there are multiple processes, when the program terminates, all
the processes should exit. How to achieve this in a clean way, it depends on the problem being solved. In this case
we decided to use a global flaxiting . No panelproc will remain in itswhile whenexiting s true.
Therefore, all we have to do to terminate the program is t@esging to 1, as we do in the reader after reach-
ing the end of file. Later, as panel processes awake from their sleep andechiéely , they will call exits
and terminate themselves.

This is an example execution for the program. Note how the panel processes temfieatee have sent
the end of file indication.

-217 -

8.ticker
Iberia arriving late for flight 666
Iberia arriving late for flight 666
Iberia arriving late for flight 666
Iberia arriving very late for flight 666
Iberia arriving very late for flight 666
Iberia arriving very late for flight 666
control-d
; panel exiting
panel exiting

If you look at the program, you will notice that after we have updated the message, the panel processes will
acquire thansg.lck in sequence as they write their panels, after another. If the data structuresg is con-

sulted a lot, the whole program will be very slow due to delays caused by the usglafck to protect the data.

While a panel process is writing to the panel, no other panel process will be able to even touch the message. We
can improve things a little bit by writing to the panaitsideof the critical region. By doing so, other panel pro-
cesses will be allowed to gain the lock and consult the message as well.

void
panelproc(int fd)
{
ulong lastvers = -1;
char* text;
do {
text = nil;
glock(&msg.Ick);
if(msg.text != nil && lastvers = msg.vers){
text = strdup(msg.text);
lastvers = msg.vers;
}
qunlock(&msg.lck);
if (text I=nil){
write(fd, text, strlen(text));
free(text);
}
sleep(5 * 1000);
} while(lexiting);
fprint(2, "panel exiting\n");
exits(nil);
}

Here, we moved therrite outside of the critical region. Because the panel itself (i.e., its file) is not being shared
in our program, we do not need to protect from races while writing it. We created one process for each panel and
that was nice.

But we can do much better. Are there races when multiple processes anegidistga data structure? While
nobody is changing anything, there are no races! During a long time, all the panel processes will beyst|ing
reading its memory, and the input process will be just blocked waiting for a line. It would be nice to let all the
panel processes to access the data structure at the same time, in those periods when nobody is msglifying

Plan 9 hasread/write locks. A read/write lock, orRWLock is similar to a queuing lock. However, it
makes a distinction betweeaadersandwriters of the resource being protected by the lock. Multiple readers are
admitted to hold the very sani®WLock at the same time. However, only one writer can hoRVELock and in
this case there can be no other reader or writer. This is also cathedti@le-reader single-writetock.

Processes that want to acquire the lock for reading mustade andrunlock

. Sig rlock runfock
void rlock(RWLock *I)
void runlock(RWLock *I)

Processes that want to acquire the lock for writing mustwlsek , andwunlock .

-218 -

sig wlock wunlock
void wlock(RWLock *I)
void wunlock(RWLock *I)

The improved version for our program requires a change in the data structure, that muBMIEe&know.

struct Msg {
RWLock Ick; /l multiple readers/one writer.
char* text; /I for the message
ulong vers; /I for the message

}

The new code fopanelproc must acquire a lock for reading, but is otherwise the same.

void
panelproc(int fd)
{

...as before...
rlock(&msg.lck);
if(msg.text != nil && lastvers = msg.vers){
text = strdup(msg.text);
lastvers = msg.vers;

runlock(&msg.Ick);
...as before...

}

And the process writing to the data structure now requires a write lock.

void
reader(void)

...as before...
wlock(&msg.Ick);
free(msg.text);
msg.text = strdup(buf);

msg.vers++;
wunlock(&msg.lck);
...as before...
}
. resource
erter Iocked --
resource
Readerl................... locked
resource
REAAEI 2 v e locked
resource
Reader B |0Cked

Figure 10.6:Multiple readers make turns to read when using a queuing lock.

If you want tofeelthe difference between the version usf@gocks and the one usinBWLocks, try to increase

the number of panels to 15, and make famelprocs take a little bit more time to reamhsg, for example, by
usingsleep to make them hold the lock for some time. In the first time, messages will slowly come out to the
panels (or your standard output in this case). If each process holds the lock for a second, the 15th process

-219 -

acquiring the lock will have to wait at least 15 seconds. In the second case, all of the pannels will be quickly
updated. Furthermore, using tRWLock keeps the resource locked for less time, because the readers are now
allowed to overlap.

This is shown in figures 10.6 and 10.7. Both figures assume that initially, the writer and all the readers try to
acquire the lock (the time advances to the right). When using a queueing lock, look at what happens to the read-
ers. Compare with the next figure, which corresponds to using a read/write lock.

Writer rfosc(l)(lgge ...
Readerl1 .- ---oivivinn rﬁosc?(uerge ..
Reader2 .- oot rﬁosc?(uerge
Reader3 ... ioiiiii . rﬁosc?(uerge

Figure 10.7:Multiple readers may share the lock at the same time using a read/write lock.

When there is not much competition to acquire the lock, or when there are not many readers, the difference
may be unnoticed. However, locks heavily used with many processes that just want to read the data, can make a
difference between both types of locks.

10.4. Rendezvous

A primitive provided to synchronize several processagiglezvous . It has this name because it allows
two different processes to rendezvous, i.e., to meet, at a particular point in their execution. This is the interface.

sig rendezvous
void* rendezvous(void* tag, void* value)

When a process callsendezvous with a given tag , the process blocks until another process calls
rendezvous with the samdag . Thus, the first process to arrive to thendezvous will block and wait for
the second to arrive. At that point, the values both processes gawalas are exchanged. That is,
rendezvous for each process returns thialue passed to the call by the other process. See figure 10.8.

Process A Process B

calls:rendezvous(tag, "hi")

EWaiting...

: calls:rendezvous(tag, "there")

L B rendezvous i
call returnsthere call returnshi

time time

Figure 10.8: Two processes doing a rendezvous.

- 220 -

The tag used for theendezvous represents the meeting-point where both processes want to rendezvous.
The ability to exchange values makes the primitive more powerful, and converts it into a generic communication
tool for use when synchronization is required. In general, any two processes may rendezvous. It is not necessary
for them to share memory. Of course, the values suppligdgss andvalues cannot be used to point to shared
variables when the processes are not sharing memory, but that is the only limitation. The values are still
exchanged even if memory is not shared.

The following program creates a child process, which is supposed to run an HTTP server. To execute nicely
in the background, all the work is done by the child, and not by the parent. This way, the user does not need to
add an additiona& when starting the program from the shell. However, before doing the actual work, the child
must initialize its data structures and perhaps read some configuration files. This is a problem, because initializa-
tion could fail. If it fails, we want the parent processegits with a non-null status, to let the shell know that
our program failed.

One way to overcome this problem is to make the parent process wait until the child has been initialized. At
that point, it is safe for the parent to cekits , and let the child do the work if everything went fine. This can be
done usingendezvous like follows.

main(int, char*[])

{
int i;
int childsts;

switch(rfork(RFPROC|RFNOTEG|RFNOWAIT)){

case 0:
if (httpinit() < 0)
rendezvous(&main, (void*)-1);
else
rendezvous(&main, (void*)0);
httpservice(); /I do the job.
exits(nil);
case -1:
sysfatal("rfork: %r");
default:

childsts = (int)rendezvous(&main, (void*)0);
if (childsts == 0)
exits(nil);
else {
fprint(2, "httpinit failed\n");
exits("httpinit failed");

}

Note that each process cattndezvous once The parent calls it to rendezvous with the child, after it has ini-
tialized. The child calls it to rendezvous with the parent, and report its initialization status. As the tag, we used
the address fomain . It does not really matter which tag we use, as long as it is the same address&dwirg
seemed like a good idea to make it explicit that we are doing a rendezvous just for this function. As values, the
child gave-1 (as a pointer, sic) to report failure, 6r(as a pointer) to report success. As we seatidezvous

works although these processes are not sharing memory.

To test this program, we used an utterly complex implementation for HTTP
void
httpservice(void)

sleep(50000);
}

That is the best we could do given the so many standards that are in use today for the Web. Also, we tried the pro-
gram with two implementations fdnttpinit , one returning and another returning. , like this one.

-221 -

int
httpinit(void)

sleep(2000);
return O;

}

And this is an example execution for both versions of the program.

8.rendez
httpinit failed
;. 8.rendez After two seconds we got another prompt.
;. ps/[grep 8.rendez
nemo 7076 0:00 0:00 24K Sleep 8.rendez

10.5. Sleep and wakeup

Going back to our airport panels program, it is a resource waste to keep allphosiprocs polling just
to check if there is a new message. Another abstraction, provided by the functleep , rwakeup , and
rwakeupall may be more appropriate. By the way, do not confuse this with the funstemp (2) that puts
the process to sleep for some time. It is totally different.

The idea is that a process that wants to use a resource, locks the resource. The resource is protected by a
lock, and all operations made to the resource must keep the lock held. That is not new. In our program, processes
updating or consultinghsg must havemsg locked during these operations.

Now suppose that, during an operation (like consulting the message), the process decides that it cannot pro-
ceed (e.g., because the message is not new, and we only want new messages). Instead of releasing the lock an
trying again later, the process may aalleep . This puts the process to sleep unconditionally. The process goes
to sleep because it requires some condition to be true, and it finds out that the condition does not hold and calls
rsleep.

At a later time, another process may make the condition true (e.g., the message is updated). This other pro-
cess callswakeup , to wake up one of the possibly many processes waiting for the condition to hold.

The idea is thatsleep is a temporary sleep waiting for a condition to hold. And it always happens in the
middle of an operation on the resource, after checking out if the condition holds. This function releases the lock
before going to sleep, and re-acquires it after waking up. Therefore, the process can nicely sleep inside its critical
region, because the lock is not held while sleeping. If the lock was kept held while sleeping, the process would
never wake up. To wake up, it requires another process toraakeup . Now, a process can only call
rwakeup while holding the resource, i.e., while holding the lock. And to acquire the lock, the sleeper had to
release it before sleeping.

The behavior ofwakeup is also appropriate with respect to the lock of the resource. This function wakes
up one of the sleepers, but the caller continues with the resource locked and can complete whatever remains of its
critical region. When this process completes the operation and releases the lock, the awakened one may re-acquire
it and continue.

Re-acquiring the lock after waking up might lead to starvation, when there is always some process coming
fast to use the resource and acquiring the lock even before the poor process that did wake up can acquire it again.
To avoid this, it is guaranteed that a process that is awakened will acquire the lock sooner than any other new-
comer. In few words, you do not have to worry about this.

A variant ofrwakeup , calledrwakeupall , wakes umll the processes sleeping waiting for the condition
to hold. Although many processes may be awakened, they will re-acquire the lock before returningjdegpnm .
Therefore, only one process is using the resource at a time and we still have mutual exclusion for the critical
region.

The data structurBendez represents the rendezvous point where processes sleeping and processes waking
up meet. You can think of it as a data structure representing the condition that makes one process go to sleep.

-222 -

typedef
struct Rendez

{
QLock *;

} Rendez;

The field| must point to theQLock protecting the resource (used also to protect Remdez). Using this
abstraction, and its operations,

sig rsleep rwakeup rwakeupall
void rsleep(Rendez *r)
int rwakeup(Rendez *r)
int rwakeupall(Rendez *r)

we can reimplement our airport panels program. We start by redefining our data structure and providing two oper-
ations for using it.

typedef struct Msg Msg;

struct Msg {
QLock Ick; /I to protect the other fields
Rendez newmsg; // to sleep waiting for a new message.
char* text; /I for the message

k

void wmsg(Msg* m, char* newtext);
char* rmsg(Msg* m);

The operatiowmsgwrites a new the text for the message. The operatissg reads a new text for the message.
The idea is that a call tansg will always sleep until the message changes. Wiversgchanges the message, it
will wake up all the processes waiting for the new message.

This isrmsg. It locks the message, and goes to sleep waiting for the condition (need a new message) to
hold. After waking up, we still have the lock. Of course, any other process could use the resource while we were
sleeping, but this is not a problem because all we wanted was to wait for a new message, and now we have it.
Thus, the function makes a copy of the new message, releases the lock, and returns the new message to the caller.

char*
rmsg(Msg* m)
{

char* new;

glock(&m->Ick);
rsleep(&m->newmsg);
new = strdup(m->text);
qunlock(&m->Ick);
return new;

}

And this iswmsg It locks the resource, and updates the message. Before returning, it wakes up anyone waiting
for a new message.

void

wmsg(Msg* m, char* newtext)

glock(&m->Ick);
free(m->text);
m->text = strdup(newtext);
rwakeupall(&m->newmsg);
qunlock(&m->Ick);

}

Now things are simple for our program, the panel process may justrest] to obtain a new message. There is

- 223 -

no need to bother with concurrency issues here. The funatimg is our interface for the message, and it cares
about it all.

void
panelproc(int fd)
{
ulong lastvers = -1;
char* text;
while(lexiting){
text = rmsg(&msg);
write(fd, text, strlen(text));
free(text);
}
fprint(2, "panel exiting\n®);
exits(nil);
}

In the same way, the reader process is also simplified. It watisgand forgets about concurrency as well.
void
reader(void)

char buf[512];
int nr;

for(;;{
nr = read(0, buf, sizeof(buf)-1);

if (nr <= 0)
break;
buf[nr] = 0;
wmsg(&msg, buf);
}
exiting = 1;
exits(nil);

}

The rest of the program stays the same. However, this initialization is now necessary, bec&esaltie needs
a pointer to the lock.

msg.newmsg.l = &msg.lck;

If you try this program, you will notice a difference regarding its responsiveness. There are no polls now, and no
delays. As soon as a new message is updated, the panels are updated as well. Because of the interface we pro
vided, the write for the panels is kept outside of the critical region. And because of dealing with concurrency
inside the resource operations, callers may be kept unaware of it. That said, note that the program still must care
about how to start and terminate in a clean way.

It is very usual to handle concurrency in this way, by implementing operations that lock the resource before
they do anything else, and release the lock before returning. A module implemented following this behavior is
called amonitor. This name was used by some programming languages that provided syntax for this construct,
without requiring you to manually lock and unlock the resource on each operation. The abstractions used to wait
for conditions inside a monitor, similar to oRendez, are calleccondition variables, because those languages
used this name for such time.

10.6. Shared buffers

The bounded buffer is a classical problem, useful to learn a little bit of concurrent programming, and also
useful for the real life. The problem states that there is a shared buffer (bounded in size). Some processes try to
put things into the buffer, and other processes try to get things out of the buffer. The formers are called
producers and the latter are callembnsumers See figure 10.9

- 224 -

produce
produce e LT
produce

Figure 10.9: The bounded buffer problem.

The problem is synchronizing both producers and consumers. When a producer wants to put something in
the buffer, and the buffer is full, the producer must wait until there is room in the buffer. In the same way, when a
consumer wants to take something from an empty buffer, it must wait until there is something to take. This prob-
lem happens for many real life situations, whenever some kind of process produces something that is to be con-
sumed by other processes. The buffer kept inside a pipe, together with the process(es) writing to the pipe, and the
ones reading from it, make up just the same problem.

To solve this problem, we must declare our data structure for the buffer and two operationgtior,ignd
get . The buffer must be protected, and we are going to u@tack for that purpose (because we plan to use
rsleep andrwakeup). The operatiorput will have to sleep when the buffer is full, and we neeRendez
calledisfull to sleep because of that reason. The operag@mn will go to sleep when the buffer is empty,
which makes necessary anotheempty Rendez . To store the messages we use an array to implement a
qgueue. The array is used in a circular way, with new messages added to the position pointédd toMgssages
are extracted from the head, pointed toHul

typedef struct Buffer Buffer;
struct Buffer {

QLock Ick;

char* msgs[Nmsgs]; /I messages in buffer

int hd; // head of the queue

int tl; // tail. First empty slot.
int nmsgs; /l number of messages.
Rendez isfull; /I wait for room

Rendez isempty; // wait for item to get

k

This is our first operatiorput . It checks that the buffer is full, and goes to sleep if that is the case. If the buffer
was not full, or after waking up because it is no longer full, the message is added to the queue.

void
put(Buffer* b, char* msg)
{
glock(&b->Ick);
if (b->nmsgs == Nmsgs)
rsleep(&b->isfull);
b->msgs[b->tl] = strdup(msg);
b->tl = ++b->tl % Nmsgs;
b->nmsgs++;
if (b->nmsgs == 1)
rwakeup(&b->isempty);
gunlock(&b->Ick);

- 225 -

Note how this function callswakeup(&b->isempty) when the buffer ceases to be empty. It could be that
some processes were sleeping trying to get something, because the buffer was empty. This function, which
changes that condition, is responsible for waking up one of such processes. It wakes up just one, because there is
only one thing to get from the buffer. If there are more processes sleeping, trying to get, they will be waken up as
more messages are added by further calfsutio in the future.

The functionget is the counterpart foput . When there is no message to get, it sleepseamnpty .
Once we know for sure that there is at least one message to consume, it is removed from the head of the queue and
returned to the caller.

char*
get(Buffer* b)
{

char* msg;

glock(&b->Ick);

if (b->nmsgs == 0)
rsleep(&b->isempty);

msg = b->msgs[b->hd];

b->hd = ++b->hd % Nmsgs;

b->nmsgs--;

if (b->nmsgs == Nmsgs - 1)
rwakeup(&b->isfull);

qunlock(&b->Ick);

return msg;

}

Note howget is also responsible for awakening one process (that might be sleeping) when the buffer is no longer
full. Both functions are quite symmetric. One puts items in the buffer (and requires empty slots), the other puts
empty slots in the buffer (and requires items).

The data structure is initialized by callirngjt

void

init(Buffer *b)
Il release all locks, set everything to null values.
memset(b, 0, sizeof(*b));
Il set the locks used by the Rendezes
b->isempty.l = &b->Ick;
b->isfull.l = &b->Ick;

}

To play with our implementation, we are going to create two processes the produce messages and two more pro-
cess that consume them and print the consumed ones to standard output. Also, to exercise the code when the
buffer gets full, we use a ridiculous low size.

- 226 -

#include <u.h>
#include <libc.h>

enum {Nmsgs =4 };

typedef struct Buffer Buffer;
struct Buffer {

QLock Ick;
char* msgs[Nmsgs]; /I messages in buffer
int hd; /I head of the queue
int tl; /] tail. First empty slot.
int nmsgs; /I number of messages in buffer.
Rendez isfull; /I to sleep because of no room for put
Rendez isempty; // to sleep when nothing to get
h
/* b->Ick must be held by caller
*
void
dump(int fd, char* msg, Buffer* b)
{
int i;
char buf[512];
char* S;
s = seprint(buf, buf+sizeof(buf), "%s [*, msg);
for (i = b->hd; i 1= b->tl; i = ++i%Nmsgs)
s = seprint(s, buf+sizeof(buf),"%s ", b->msgs]i]);
s = seprint(s, buf+sizeof(buf), "I\n");
write(fd, buf, s-buf);
}
void
put(Buffer* b, char* msg)
{
glock(&b->Ick);
if (b->nmsgs == Nmsgs){
print("<full>\n");
rsleep(&b->isfull);
}
if (msg == nil)
b->msgs[b->tl] = nil;
else
b->msgs[b->tl] = strdup(msg);
b->tl = ++b->tl % Nmsgs;
b->nmsgs++;
if (b->nmsgs == 1)
rwakeup(&b->isempty);
dump(1, "put:", b);
qunlock(&b->Ick);
}
void
init(Buffer *b)
{

I release all locks, set everything to null values.
memset(b, 0, sizeof(*b));

/I set the locks used by the Rendezes
b->isempty.l = &b->Ick;

b->isfull.| = &b->Ick;

char*
get(Buffer* b)
{

char* msg;

glock(&b->Ick);

if (b->nmsgs == 0){
print("<empty>\n");
rsleep(&b->isempty);

}

msg = b->msgs[b->hd];

b->hd = ++b->hd % Nmsgs;

b->nmsgs--;

if (b->nmsgs == Nmsgs - 1)
rwakeup(&b->isfull);

dump(1, "get:", b);

qunlock(&b->Ick);

- 227 -

return msg;
}
void
producer(Buffer* b, char id)
{
char msg[20];
int i;
for (i=0;i<5;i++){
seprint(msg, msg+20, "%c%d", id, i);
put(b, msg);
}
put(b, nil);
exits(nil);
}
void
consumer(Buffer* b)
{
char* msg;
while(msg = get(b)){
/I consume it
free(msg);
}
exits(nil);
}
Buffer buf;
void

main(int, char*[J)

{

init(&buf);

if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

producer(&buf, 'a’);

if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

producer(&buf, 'b’);

if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

consumer(&buf);
else
consumer(&buf);

-228 -

The producers receive a letter as their name, to produce messagag,lie, etc., and0, b1, etc. To terminate
the program cleanly, each producer puts a final nil message. When a consumer receives a nil message from the
buffer, it terminates. And this is the program output.

; 8.pc
a0 b0 al bl a2 b2 a3 b3 a4 b4 ;

As you can see, messages are inserted in a very fair way. Changing a lifil& biandget , would let us know
if the buffer is ever found to be full or empty. This is the changegiet .

char*
get(Buffer* b)
{

...as before...

if (b->nmsgs == 0){
print("<empty>\n");
rsleep(&b->isempty);

...as before...
}
The change foput is done in a similar way, but printingfull> instead. And this is what we find out.
8.pc
<empty> <empty> a0 b0 <full> <full> newline supplied by us

al bl <full> <full> a2 b2 <full> <full> a3 b3 a4 b4 ;

It seems that initially both consumers try to get messages out of the buffer, and they find the buffer empty. Later,
producers insed0 andb0, and consumers seem to be awaken and proceed. Because both consumers were sleep-
ing and the synchronization mechanism seems to be fair, we can assura8 tkgtrinted by the one consumer

andbO by the other. It seems that by this time both producers keep on inserting items in the buffer until it gets
full. Both go to sleep. And for the rest of the time it looks like producers are faster and manage to fill the buffer,
and consumers have no further problems and will never find the buffer empty from now on.

In any case, the only thing we can say is that the code for dealing with a full buffer (and an empty buffer)
has been exercised a little bit. We can also affirm that no process seems to remain waiting forever, at least for this
run.

;. ps/[grep 8.pc

’

However, to see if the program is correct or not, the only tool you have is just careful thinking about the program

code. Playing with example scenarios, trying hard to show that the program fails. There are some formal tools to
verify if an implementation for a concurrent program has certain properties or not, but you may make mistakes
when using such tools, and therefore, you are on your own to write correct concurrent programs.

10.7. Other tools

A popular synchronization tool, not provided by Plan 9, seanaphore A semaphore is an abstraction that cor-
responds to a box with tickets to use a resource. The inventor of this abstraction made an analogy with train sema-
phores, but we do not like trains.

The idea behind a semaphore is simple. To use a resource, you need a ticket. The opaiaitiavaits
until there is a ticket in the semaphore, and picks up one. When you are no longer using the resource, you may
put a ticket back into the semaphore. The operadignal puts a new ticket into the semaphore. Because of the
analogy with train semaphoresait is also known aslown (to lower a barrier) andignal is also known as
up (to move up a barrier). In general, you will find eithgs anddown or signal andwait as operations.

Internally, a semaphore is codified using an integer to count the number of tickets in the box represented by
the semaphore. When processes eait and find no tickets in the semaphomeait guarantees that they are
put into sleep. Furthermore, such processes will be awakened (upon arrival of new tickets) in a fair way. An initial
integer value may be given to a semaphore, to represent the initial number of tickets in the box. This could be the

- 229 -

interface for this abstraction.

Sem* newsem(int n); I/l create a semaphore with n tickets
void wait(Sem* s); /I acquire a ticket (may wait for it)
void signal(Sem*s); // add a ticket to the semaphore.

Mutual exclusion can be implemented using a semaphore with just one ticket. Because there is only one ticket,
only one process will be able to acquire it. This should be done before entering the critical region, and the ticket
must be put back into the semaphore after exiting from the critical region. Such a semaphore is usually called a
mutex . This is an example.

Sem* mutex = newsem(1);

wait(mutex);
critical region here
signal(mutex);

Also, because wait on an empty semaphore puts a process to sleep, a semaphore with no tickets can be used to
sleep processes. For example, this puts the process executing this code to sleep, until another process calls
signal(w);

Sem* w = newsem(0);

\./;/.ait(w);

This tool can be used to synchronize two processes, to make one await until the other executes certain code.
Remember the HTTP server initialization example shown before. We could use an empty semaphore, and make
the parent call

wait(w)
to await for the initialization of the child. Then, the child could call

signal(w)

to awake the parent once it has initialized. However, this time, we cannot exchange a value as we could using
rendezvous

As a further example, we can implement our bounded-buffer program using semaphores. The data type must
have now one semaphore with just one ticket, to achieve mutual exclusion for the buffer. And we need two extra
semaphores. Processes that want to put an item in the buffer require a hole where to put it. Using a semaphore
with initially Nmsgs tickets, we can make the producer acquire its holds nicely. One ticket per hole. When no
more holes are available to put a message, the producer will sleep upon awalt(gholes) . In the same
way, the consumer requires messages, and there will be zero messages available, initially.

typedef struct Buffer Buffer;
struct Buffer {

Sem* mutex; /I for mutual exclusion
char* msgs[Nmsgs]; /I messages in buffer

int hd; /I head of the queue

int tl; // tail. First empty slot

int nmsgs; /I number of messages
Sem* smsgs; /I (0O tickets) acquire a msg
Sem* sholes;; // (Nmsgs tickets) acquire a hole

I

The implementation foput is similar to before. But there are some remarkable differences.

- 230 -

void

put(Buffer* b, char* msg)

{
wait(b->sholes);
wait(b->mutex);
b->msgs[b->tl] = strdup(msg);
b->tl = ++b->tl % Nmsgs;
b->nmsgs++;
signal(b->mutex);
signal(b->smsgs);

}

Before even trying to put anything in the buffer, the producer tries to get a hole. To do so, it acquires a ticket from
the semaphore representing the holes available. If there are no tickets, the producer sleeps. Otherwise, there is a
hole guaranteed. Now, to put the message in the hole acquired, a semaphonmuatdbedwith just one ticket for

providing mutual exclusion, is used. Upon acquiring the only slot for executing in the critical region, the pro-
ducer adds the message to the buffer. Also, once we have done our work, there is a new message in the buffer. A
new ticket is added to the semaphore representing tickets to maintain it consistent with the reality.

The code for a consumer is equivalent.

char*
get(Buffer* b)
{

char* msg;

wait(b->smsgs);
wait(b->mutex);

msg = b->msgs[b->hd];
b->hd = ++b->hd % Nmsgs;
b->nmsgs--;
signal(b->mutex);
signal(b->sholes);

return msg;

}

Semaphores are to be handled with care. For example, changing the first two lines above with

wait(b->mutex);
wait(b->smsgs);

is going to produce deadlock First, the consumer takes the mutex (ticket) for itself. If it happens now that the
buffer is empty, andmsgs has no tickets, the consumer will block forever. Nobody would be able to wake it up,
because the producer will not be able to acquirertheex for itself. It is very dangerous to go to sleep with a

lock held, and it is also very dangerous to go to sleep with a mutex taken. Only a few times it might be the right
thing to do, and you must be sure that there is no deadlock produced as a result.

Note that a semaphore is by no means similasteep andrwakeup . Compare
rwakeup(r);
rsleep(r);
with
signal(s);
wait(s);

The former wakes up any sleeperratand then goes to sleep. Unconditionally. The latter, adds a ticket to a
semaphore. If nobody consumes it between the two sentences, thewalt towill not sleep. Remember that a
semaphore is used to model slots available for using a particular resource. On the other hand, sleep/wakeup are
more related to conditions that must hold for you to proceed doing something.

-231 -

We said that Plan 9 does not supply semaphores. But there is an easy way to implement them. You need
something to put tickets into. Something that when wanting to get a ticket, blocks until there is one ticket avail-
able. And returns any ticket available immediately otherwise. It seems that pipes fit right into the job. This is our
semaphore:

typedef struct Sem Sem;
struct Sem {

int fd[2];
h

To create a semaphore, we create a pipe and put as many bytes in it as tickets must be initially in the semaphore.

Sem*
newsem(int n)

Sem* S;

s = malloc(sizeof(Sem));

if (pipe(s->fd) < 0){
free(s);
return nil;

while(n-- > 0)
write(s->fd[1], "x", 1);
return s;

}

A signal must just put a ticket in the semaphore.

void
signal(Sem* s)

write(s->fd[1], "x", 1);
}
A wait must acquire one ticket.
void
wait(Sem* s)
char buff1];

read(s->fd[0], buf, 1);
}

We do not show it, but to destroy a semaphore it suffices to close the pipe at both ends and release the memaory for
the data structure. Given the implementation we made, the only limitation is that a semaphore may hold no more
tickets than bytes are provided by the buffering in the pipe. But that seems like a reasonable amount of tickets for
most purposes.

Another restriction to this implementation is that the semaphore must be created by a common ancestor
(e.g., the parent) of processes sharing it. Unless such processes are sharing their file descriptor set.

Problems
1 Locate the synchronization construct in programming languages you use.
2 Do shell programs have race conditions?

3 Implement a concurrent program simulating a printer spooler. It must have several processes. Some of them
generate jobs for printing (spool print jobs) and two other ones print jobs. Needless to say that the program
must not have race conditions.

4 Implement a semaphore using shared variables protected with (spin) locks. Would you use it? Why?

-232 -

5 Assume you have monitors (invent the syntax). Implement a sempahore using monitors.

11 — Threads and Channels

11.1. Threads

Processes are independent flows of control known to Plan 9. The kernel creates them, it terminates them,
and it decides when to move one process out of the processor and when to put a process back on it. Because of the
unpredictability of context switches between processes, they must synchronize using locks, rendezvous,
sleep/wakeup, or any other means if they want to share memory without race conditions.

But there is an alternative. Thiaread?2) library provides an abstraction similar to a process, called a
thread. A thread is just a flow of control within a process. In the same way that Plan 9 multiplexes the flow of
control of a single processor among multiple processes, the thread library multiplexes the flow of control of a sin-
gle process among multiple threads.

Threadl ~ run rdy. _ready
Process 1: \/ A v . ready
Thread 2 ready run A run T
"-pontext switch
Process2: . _ready q run ‘ ready

Figure 11.1: Threads are flows of control implemented by a process.

Figure 11.1 shows an example. If there are two processes, Plan 9 may put process 1 to run at the processor
for some time. During this time, process 2 would be ready to run. After the time passes, there is a context switch
and Plan 9 puts process 2 to run and leaves process 1 as ready to run. In this figure, the process 1 has two thread:s
in it. Each thread thinks that it is a single, independent, flow of control (like all processes think). However, both
threads are sharing the time in the processor that was given to process 1. Looking at the process 1 in the figure
shows that, while this process is running, the time is used to execute two different flows of control, one for each
thread.

For Plan 9, there are no threads. The kernel puts process 1 to run and what process 1 does with the processor
is up to it. Therefore, when the process 1 is moved out of the processor in the context switch, both threads cease
running. In fact, it is the single flow of control for process 1 which ceased running.

Why should you ever want to use threads? Unlike for processes, that are moved out of the processor when
the system pleases, a thread nmag be moved out of the processor (preempted) unless you call functions of the
thread library to synchronize with other threads. What does this mean? There will be no context switch between
threads unless you allow it. There will be no races! You are free to touch any shared data structure as you please,
and nobody would interrupt in the middle of a critical operation, provoking a race.

This is the same program used as an example in the beginning of the last chapter. It increments a shared
counter using two different flows of control. This time, we use two threads to increment the counter. As any other
program using the thread library, it includdésead.h , that contains the definitions for thread data types and
functions. Also, note that the program dasst have amain function. That function is provided by the thread
library. It creates a single thread within the process that starts executing the fuilegadmain . This is the
function that you are expected to provide as your entry point.

- 235 -

#include <u.h>
#include <libc.h>
#include <thread.h>

int cnt;

void
incrthread(void*)

{

int i;

for (i=0;i<2;i++)
cnt++;

print(“cnt is %d\n", cnt);

threadexits(nil);

}

void
threadmain(int, char*[])

{

int i;

threadcreate(incrthread, nil, 8*1024);
for (i=0;i<2;i++)

cnt++;
print(“cnt is %d\n", cnt);
threadexits(nil);

}

The program callshreadcreate to create a new thread (the second in this process!) that starts executing the
function incrthread . After this call, there are two independent flows of control. One is executing
threadmain , after the call tathreadcreate . The other is starting to execuitgcrthread . The second
parameter given tthreadcreate is passed by the library as the only argument for the main procedure for the
thread. Becausmcrthread does not require any argument, we passla pointer. The third argument to
threadcreate is the thread'’s stack size. The stack for a thread is allocated as a byte array in the data segment,
like other dynamic variables, it lives in the heap (within the data segment).

It is interesting to see that threads ctdteadexits to terminate, instead of callingxits . Calling
exits would terminate the entire process (the only flow of control provided by Plan 9). When all the threads in
the process have terminated their main functions, or céflezhdexits , the thread library will calexits to
terminate the entire process. The exit status for the whole process is that given as a parameter to the last thread to
exit, which is a reasonable behavior. By the way, there is a more radical function for exiting that terralhates
the threads in the process, it is callhdeadexitsall and is used in the same way.

And is this is what we get for using threads instead of processes. The program will always produce this out-
put (although the order girints may vary)

. 8.tincr
cntis 2
cntis 4

And there are no races! When a thread starts executing, it will continue executing until ithcafislexits

We did not call any function of the thread library, and there is no magic. There is no way the thread could suffer a
context switch in a bad moment. The program is safe, although it does not use even a single lock. Of course, if a
thread loops for a long time without giving other threads the chance of running, the poor other threads will wait a
very long time until they run. But this is seldom the case.

What if we modify the program as we did with the one with processes? You may think that usliegpa
may lead to a context switch, and expose a possible race condition. Although this is not the case, let’s try it.

- 236 -

fincr2.cn

#include <u.h>
#include <libc.h>
#include <thread.h>

int cnt;

void
incrthread(void*)

{
int i;
int loc;

for (i=0;i<2;i++{
loc = cnt;
loc++;
sleep(0);
cnt = loc;

}

print(“cnt is %d\n", cnt);

threadexits(nil);

}

void
threadmain(int, char*[])

{
threadcreate(incrthread, nil, 8*1024);

incrthread(nil);

}

Executions for this program yield the same result we expect.

. 8.tincr2
cntis 2
cntis 4

No race was exposed. Indeed, no thread was ever moved out of the processor by thsleap to If the first

thread was executinigcrthread |, the call to sleep moved the whole process out of the processor, as shown in
figure 11.2. When later, the process was put back into the running state, the first thread was still the one running.
Remember, the underlying Plan 9 kernel knowgghing about threads. The call tsleep puts the process to

sleep. Of course, the thread went to sleep as a resultalileher threads in the process. But in any case, you did

not call any function from the thread library, and there wascontext switch between threads. For the thread
library, it seems that the first thread is still executing in very much the same way that if you neveistedipd.

1st thread run
. sleep ready A

Our process:

2nd threadready ready
context switch because sieep
Another process: ____ready y run © ready

Figure 11.2:A call tosleep from a thread moves the entire process out of the processor.

Only when the first thread calthreadexits , the second thread gets a chance to run. The thread library
releases the resources for the exiting thread, and switches to the other thread in the process (that was ready to run).
This thread runs to completion, like its sibling, and after callimgadexits , the whole process is terminated

- 237 -

by the thread library (by a call texits), because there are no more threads in this process.

How can a thread abandon voluntarily the processor? E.g., to favor other threads. The fyiettionin
the thread library makes a context switch between threads. Any other thread ready to run will be put to execute.
Of course, if no more threads are ready to yigld will return immediately to the calling thread. Therefore, this
change tancrthread createsa bug in our program.
for (i=0;i<2;i++){
loc = cnt;
loc++;
yield();
cnt = loc;

}

The call toyield forcesa context switch at the worst moment. But note that, unlike when using processes, this
time youhad toask for the context switch.

11.2. Thread names

Like processes, threads have identifiers. The thread library assigns a unique integer to each thread, known as
its thread id. Do not confuse the thread id with the PID for the process where the thread is running. The former
is known by the thread library, and unknown to the underlying Plan 9. The next program creates several threads,
that print their own ids. The call tthreadid returns the identifier of the thread that calls the function.

The functionthreadcreate returns the identifier for the thread it created, and the program prints this
value as well, to let you see how things match. In gen¢hna¢adid is used when a thread wants to know its
own identifier. However, to know the ids for some threads created, it suffices to record the return values when
threadcreate is called. The program prints the PID along with the thread ids, to let you clearly see the differ-
ence.

fid.cn

#include <u.h>

#include <libc.h>

#include <thread.h>

void

threadfunc(void*)

{
print(“thread id= %d\tpid=%d\n", threadid(), getpid());
threadexits(nil);

}

void
threadmain(int, char*[])

{
int i, id;
print(“thread id= %d\tpid=%d\n", threadid(), getpid());
for (i=0;i<2;i++{
id = threadcreate(threadfunc, nil, 8*1024);
print("\tcreated thread %d\n", id);

}

This is the output from the program.

- 238 -

o 8.tid

thread id= 1 pid=3904
created thread 2
created thread 3

thread id= 2 pid=3904

thread id= 3 pid=3904

What would happen if we implemernt from the last chapter, but using threads? This program used two flow
of controls. One was kept incrementing a counter. The other one tried always to decrement the counter, but not
below zero. The next program creates two threads. One runs this function.

void

incr(void* arg)

int* cp = arg;

threadsetname("incrthread");
for(;;{
*cp = *cp + 1,
print(“cnt %d\n”, *cp);

threadexits(nil);

}

The other runs this instead.

void
decr(void* arg)

int* cp = arg;

threadsetname("decrthread");
for(;;){
if (*cp > 0)
*cp = *cp - 1,
print("cnt %d\n", *cp);

threadexits(nil);

}

This time, we pass an an argument for both threads a pointer to the shared counter.

#include <u.h>
#include <libc.h>
#include <thread.h>
int cnt;

void
incr(void* arg)
{

int* cp = arg;

threadsetname(“incrthread");

for(;;){
*cp =*cp + 1,
print("cnt %d\n", *cp);
yield();

}

threadexits(nil);

- 239 -

void
decr(void* arg)

{

int* cp = arg;

threadsetname("decrthread");

for(;;){

if (*cp > 0)

*cp=*cp -1,
print(“cnt %d\n", *cp);
yield();

}

threadexits(nil);

}

void
threadmain(int, char*[])

{

threadsetname("main");
threadcreate(incr, &cnt, 8*1024);
threadcreate(decr, &cnt, 8*1024);
threadexits(nil);

}

One of the threads will never run!. It will starve. When we executed the program, the thread incrementing the
counter was the lucky one. It started running, and because it does not call any synchronization function from the
thread library, it willneverleave the processor in favor of the other thread.

. 8.tent

cntl

cnt 2

cnt 3

cnt4

cntb5

cnt 6

...and so on ad nauseum.

We can double check by using the debugger. First, let's locate the process that is running our program.

. ps |grep 8.tent
nemo 4546 0:00 0:00 120K Pwrite 8.tent

Now we can ruracid on the process 4546.

; acid - thread 4546
/proc/4546/text:386 plan 9 executable

[sysllib/acid/port
[sysllib/acid/thread
[sysllib/acid/386
acid:

The option-l thread loads functions into acid for debugging threaded programs. For example, the function
threads lists the threads in the process.

acid: threads()

p=(Proc)0x169b8 pid 4546 Running
t=(Thread)0x19a68 Running tent.c:14 incr [incrthread]
t=(Thread)Ox1bb28 Ready ?file?:0 {}

acid:

There are two threads. Reasonable, because the main threadioedbadkxits by this time. Both threads are

- 240 -

listed (a line each) after one line describing the process where the threads run. This proces<l548 pas we

knew, and is running. The lucky running thread is executing at line Xdmfc , in the function namedahcr

The debugger does even show a name for the thieedhread . That is what the calls tthreadsetname

in our program were for. This function assigns a (string) name to the calling thread, for debugging. This string can
be also obtained usinpreadgetname , for example, to print diagnostics with the name of the thread issuing
them.

The second thread is ready to run, but it did not even touch the processor. In fact, it did not have time to ini-
tialize some of its data, and the debugger gets confused regarding which file, line number, and thread name corre-
spond to the second thread.

We are going to modify the program a little bit, by calliggeld on each thread to let the other run. For
example, this is the neimcrthread . The other one is changed in a similar way.

void

incr(void* arg)

int* cp = arg;

threadsetname("incrthread");
for(;;{
*cp=*cp + 1,
print(“cnt %d\n", *cp);
yield();

threadexits(nil);

}

This is what results from the change. Each thread yields to the other one, and both onces execute making turns.
There will always be one pass in tf and then a context switch, forced bield

;. 8.tent
cntl
cntO
cntl

Another debugger function defined when called witthread knows how to print the stacks for all threads in
the process. Now that both threads had a chance to run, you can see how the debugger clearly identifies one thread
asincrthread , and the other one atecrthread

- 241 -

;. ps/grep 8.tent

nemo 4571 0:00 0:00 120K Pwrite 8.tcnt
; acid - thread 4571

/proc/4571/text:386 plan 9 executable

Isysllib/acid/port

Isysllib/acid/thread

/sysllib/acid/386

acid: stacks()

p=(Proc)0x169b8 pid 4571 Running

t=(Thread)0x19a68 Ready /usr/nemol/tcnt.c:15 incr [incrthread]

yield()+0x5 /sys/src/libthread/sched.c:186
incr(arg=0xd010)+0x39 /usr/nemol/tcnt.c:15
launcher386(arg=0xd010,f=0x1020)+0x10 /sys/src/libthread/386.c:10
Oxfefefefe ?file?:0

t=(Thread)0x1bb28 Running /usr/nemol/tcnt.c:30 decr [decrthread]
pwrite()+0x7 /sys/src/libc/9syscall/pwrite.s:5

print(fmt=0x1136a)+0x24 /sys/src/libc/fmt/print.c:13
decr(arg=0xd010)+0x3b /usr/nemo/tcnt.c:30
launcher386(arg=0xd010,f=0x105f)+0x10 /sys/src/libthread/386.c:10
Oxfefefefe ?file?:0

This is a very useful tool to debug programs using the thread library. It makes debugging as easy as when using
processes. The debugger reports thaithread = was executingield , anddecrthread was executing its

call to print , by the time the stack dump was made. Note how the process was running, but only one of the
threads is running. The other one is ready to run, because it did yield.

11.3. Channels

Synchronizing several processes was very easy when we used pipes. While programming, we could forget all
about race conditions. Each process was making its job, using its own data, and both processes could still work
together to do something useful.

Fortunately, there is an abstraction provided by the thread library that is very similar. It is cahashael
A channel is an unidirectional communication artifact. One thread can send data through one end of the channel,
and another thread may receive data at the other end. Because channels are meant to send data of a particular type
a channel delivers messages of a given size, decided when the channel is created. This is not a restriction. If data
of different sizes must be sent through a channel, you can always send a pointer to it.

To create a channel, calhancreate

;. SIg chancreate
Channel* chancreate(int elsize, int nel)

and specify with the first argument the size for the data type being sent through it. The second parameter specifies
how many messages may be buffered inside the channel (i.e., the buffer size for the channel). To send and receive
messages, the functioeend andrecv provide the primary interface.

;. Sig send recv
int send(Channel *c, void *v)
int recv(Channel *c, void *v)

Before any further discussion, let's see an example. In the previous chapter we implemented a program for the
bounded-buffer problem. This is another solution to the same problem, using threads and channels.

- 242 -

#include <u.h>
#include <libc.h>
#include <thread.h>
enum {Nmsgs =4 };
Channel* bufc;

void
producer(void *arg)
{
char* id = arg;
char* msg;
int i;
for(i=0;i<5;i++){
msg = smprint("%s%d", id, i);
send(bufc, &msg);
}
send(bufc, nil);
threadexits(nil);
}
void
consumer(void*)
{
char* msg;
do {
recv(bufc, &msg);
if (msg = nil){ /I consume it
print("%s ", msg);
free(msg);
}
} while(msg != nil);
threadexits(nil);
}
void
threadmain(int, char*[])
{
bufc = chancreate(sizeof(char*), Nmsgs);
threadcreate(producer, "a", 8*1024);
threadcreate(producer, "b", 8*1024);
threadcreate(consumer, nil, 8*1024);
consumer(nil);
}

The channel is created to send messages with the sizelwdra , and with enough buffering fdimsgs mes-
sages. Thus, the channel is our bounded buffer.

bufc = chancreate(sizeof(char*), Nmsgs);

The program will never destroy the channel, ever. Should we want to destroy it, we might call
chanfree(bufc);

But that can only be done when the channel is no longer needed, after the last consumer completes its job. The
consumer calls

recv(bufc, &msg);

to receive a message from the channel. Once a message is received, the message isrstovedbthe address
given as the second argument. Thatréxv receives a&har* and stores it akmsg After having received the
message, the consumer prints it and tries to receive another one.

- 243 -

The producer, on the other hand, concocts a message and calls
send(bufc, &msg);

This call sends through the channel the message pointed &g, with the size of echar* . That is,send
sends the (pointer) value msg through the channel.

If producers start first and put messages in the channel, they will block as soon as the buffering in the chan-
nel fills up (similar to what would happen in a pipe). If the consumers start first and try to get messages from the
channel, they will block if the buffer in the channel has no messages. This is the behagamdbfandrecv
when the channel has some buffering.

It may be illustrative for you to compare this program witb.c , the version without using channels that
we made in the last chapter. Both programs achieve the same effect. This omotess even a single lock, nor
sleep/wakeup. It does not have any race either. Each thread uses its own data, like when you connect multiple pro-
cesses using pipes. Race conditions are dealt with by avoiding them in a natural way.

The next program does a ping-pong between two threads. Each one sends an integer value to the other,
which increments the number before sending it back to the former (see figure 11.3). The program uses channels
with no buffering.

#include <u.h>
#include <libc.h>
#include <thread.h>

Channel* pingc;
Channel* pongc;

void
pingthread(void*)
{
int msg;
for(;;){
recv(pingc, &msg);
msg++;
print("%d\n", msg);
send(pongc, &msg);
}
}
void
pongthread(void*)

{

int msg;

for(;;){
recv(pongc, &msg);
msg++;
print("\t%d\n", msg);
send(pingc, &msg);

- 244 -

void
threadmain(int, char*[])

{
int kickoff;

pingc = chancreate(sizeof(int), 0);
pongc = chancreate(sizeof(int), 0);
threadcreate(pingthread, nil, 8*1024);
threadcreate(pongthread, nil, 8*1024);
kickoff = O;

send(pingc, &kickoff);

threadexits(nil);

}

Each channel is created to send messages with the sizardf grand with no buffering.
pingc = chancreate(sizeof(int), 0);
pongc = chancreate(sizeof(int), 0);

Theping thread calls
recv(pingc, &msg);

to receive a message from the charpiabc . The message is stored bgcv at the address given as the second
argument. That istecv receives an integer and stores ité&ansg Once the integer has arriveging incre-
ments it and calls

send(pongc, &msg);

to send througipongc the message pointed to ®msg That is, to send the integensg (because the channel
was created to send messages with the size of a integer).

Initially, both threads would block atcv , because nobody is sending anything yet. To kick off the ping-
pong, the main thread sends an initial zero toghgc channel. See figure 11.3.

——={ pongc |—=
-<——{ pingc <

Figure 11.3: A ping pong with threads and channels.

The output from the program is a nice ping pong. Note that context switches between threads happen when
we callsend andrecv . Any synchronization function from the thread library is likely to produce a context
switch.

. 8.out
1

3

A channel with no buffering is producing a rendezvous between the thread sending and the one receiving. A
recv from such a channel will block, until there is something to receive. Because the channel has no buffering,
there can baothingto receive until another thread caiend for the same channel. In the same wagead to

a channel with no buffering is going to block if nobody is receiving on it. It will block until another thread calls

- 245 -

recv and the message can be sent.

We could exploit this in our program to synchronize more tightly both threads and use just one channel.
This is useful to better understand how channels can be used, but (perhaps arguably) it leads to a more obscure,
yet compact, program.

Suppose that initiallping sends a messagepong andpong receives it. The former callsend and the
later callsrecv. If ping callssend first, it is going to block untilpong callsrecv on the channel (which had
no buffering). And vice-versa.

Now comes the point. Wheping completes itssend it is for sure thatpong has completed itsecv .
Or we could say that whepong completes itsecv it is certain thaping completed itssend. Therefore, the
same channel can be used again to send a number back. Thigptnge,calls send andping callsrecv .
Again, both calls will rendezvous, the first call made will block and wait for the other. There is no doubt regard-
ing whichrecv is going to receive for whiceend. So, the code would work along these lines.

ping() {

(1) send(c, &msg); /I sends tq3)

) recv(c, &msg); /I receives frong4)
}

pong() { _

3) recv(c, &msg); // receives fronfl)
(4) send(c, &msg); // sends tq2)

But both threads look fairly similar. In fact, considering their loops, they look the same. Receive something,
increment it, send it back. Only that while one is receiving the other one is sending. Therefore, we could use the
same code for both threads, like the next program does.

#include <u.h>
#include <libc.h>
#include <thread.h>

void
pingpongthread(void*a)
{
ulong msg;
Channel*c = a;
for(;;){
msg = recvul(c); Il'i.e., recv(c, &msgQ);
msg++;
print("%d\n", msg);
sendul(c, msg); /l'i.e., send(c, &msg);
}
}
void
threadmain(int, char[])
{
Channel* c;
int kickoff;

¢ = chancreate(sizeof(int), 0);
threadcreate(pingpongthread, c, 8*1024);
threadcreate(pingpongthread, c, 8*1024);
kickoff = 0;

sendul(c, kickoff);

threadexits(nil);

}

Initially, both threads (now runningingpongthread) will block at recv . They are ready for their match.

- 246 -

When the main thread sends an initial zero through the only channel, the thread thatexalletirst will be the
one receiving the message. Which one does receive it? We do not care. If both players run the same code, why
should we care?

At this point things work as discussed above. The thread that received the initial zero is now atey its
preparing to send to the other. The other thread is still waiting insigdev . Thesend from the former will
deliver the number to the later. And both calls will meet in time because of the lack of buffering in the channel.
Later, the very same channel will be free to send another number back.

The program usesendul andrecvul , instead ofsend andrecv . These functions are convenience
routines that send and receive an unsigned integer value. They are very convenient when the channel is used to
send integers. There are other similar functions, caésdlp andrecvp that send and receive pointers instead.

sig sendul recvul sendp recvp
int sendul(Channel *c, ulong v)
ulong recvul(Channel *c)
int sendp(Channel *c, void *v)
void* recvp(Channel *c)

They are exactly likssend andrecv for messages of the size of integers and messages of the size of pointers,
respectively.

11.4. 1/O in threaded programs

Performing I/O from a thread that shares the process with other threads is usually a bad idea. It is not harmful to
call print and other I/O functions for debugging and similar purposes. But it may be harmful to the program to
read from the console or to read from or write to a network connection.

Consider the airport panels application from the last chapter. We are going to make an implementation
using threads. The application must convey a message typed at a console to the multiple panels in the airport.
This implies several different activities:

1 Reading messages from the console.
2 Broadcasting each new message to all the panels.
3 Updating each panel

Using the thread library, we can program the application in a very modular way. Each activity may be performed
by a different thread, without even thinking on what the other threads would do. To make all the threads work
together, we can use channels.

For example, @onsread thread may be in charge of reading one line at a time from the console, and send
each new message read through a channebtaat thread.

void

consreadthread(void*)

{
Biobuf bin;

char* In;

threadsetname("consread");

Binit(&bin, 0, OREAD);

while (In = Brdstr(&bin, \n’, 0))
sendp(bcastc, In);

sendp(bcastc, nil);

Bterm(&bin);

threadexits(nil);

}

The code can now be almost as simple as the definition for the thread’s task. We ha®rdsted from bio(2)

to read a line at a time from standard input. UnliBadline , this function returns a C string allocated with
malloc that contains the line read. The final arguménasksBrdstr not to remove the trailingn in the

string, which is just what we need. To make things terminate cleanly, upon EOF from standard input, we send a

- 247 -

nil message as an indication to exit.

Another threadbcast , will be only concerned about broadcasting messages to panels. When it receives a
new message, it sends one copy of the message to each panel. To do this, the program may use an array of chan
nels,panelc , with one channel per panel.

void
bcastthread(void*)
{
char* msg;
int i;
threadsetname("bcast");
do {
msg = recvp(bcastc);
for (i = 0; i < Npanels; i++)
if (msg != nil)
sendp(panelc(i], strdup(msg));
else
sendp(panelc[i], nil);
free(msg);
} while(msg != nil);
threadexits(nil);
}

The nil message meaning exiting is also broadcasted, to indicate to all panels that the program is terminating.

A panel thread (one for each panel) can simply read new messages from the panel’s channel and update a
panel. It needs to know which channel to read messages from, and which panel to write to. A structure is declared
to pass such information as an argument.

typedef struct PArg PArg;
struct PArg {

Channel* c; /I to get new messages from
int fd; /I to the panel’s file.
h
Using it, this can be its implementation. Like before, a nil message is an indication to exit.
void
panelthread(void* a)
{
PArg* arg = a;
char* msg;
threadsetname("panel™);
while(msg = recvp(arg->c)){
write(arg->fd, msg, strlen(msg));
free(msg);
threadexits(nil);
}

All threads were simple to implement, and the structure for the program follows easily from the problem being
solved. We did not have to worry about races since each thread is only using its own data.

There is one problem, though. If a thread c&8ltsistr , to read from the console, it is going to block all the
threads. It blocks the entire process. The same happens while updating the slow panelswrgimg #o their
files. This problem is easy to solve. Instead of creating a thread toonsreadthread , and one more thread
to run eactpanelthread function, we can create processes. The fungiimtcreate creates a new process
(usingrfork) with a single thread in it. Otherwise, it works liklereadcreate

- 248 -

; Sig proccreate
int proccreate(void (*fn)(void*), void *arg, uint stack)

The processes created using this function share the data segment among them. Inpeotaligate calls
rfork(RFPROC|RFMEM|RFNOWAIT) , because the thread library keeps its data structures in the data segment,
which must be shared. In a few cases, you may want to supply a few extra flégskto , when creating a pro-
cess. The calprocrfork is like proccreate , but accepts a findlags argument that is or-ed to the ones
shown above.

sig procrfork
int procrfork(void (*fn)(void*), void *arg, uint stack, int rforkflag)

But beware, the thread library useendezvous in its implementation. Supplying &FRENDflag to
procrfork will break the program. Usingroccreate , we can make our program without blocking all the
threads while doing I/O.

#include <u.h>
#include <libc.h>
#include <bio.h>
#include <thread.h>

enum { Npanels =2},
Channel*bcastc; /I of char*
Channel*panelc[Npanels]; /I of char*

typedef struct PArg PArg;

struct PArg {
Channel* c; / to get new messages from
int fd; /I to the panel’s file.

void

consreadthread(void*)

{
Biobuf bin;
char* In;

threadsetname("consread");

Binit(&bin, 0, OREAD);

while (In = Brdstr(&bin, "\n’, 0))
sendp(bcastc, In);

sendp(bcastc, nil);

Bterm(&bin);

threadexits(nil);

- 249 -

void
bcastthread(void*)
{
char* msg;
int i;
threadsetname("bcast");
do {
msg = recvp(bcastc);
for (i = 0; i < Npanels; i++)
if (msg != nil)
sendp(panelcfi], strdup(msg));
else
sendp(panelcfi], nil);
free(msg);
} while(msg != nil);
threadexits(nil);
}
void
panelthread(void* a)
{
PArg* arg = a;
char* msg;
threadsetname("panel");
while(msg = recvp(arg->c)){
write(arg->fd, msg, strlen(msg));
free(msg);
}
threadexits(nil);
}
void
threadmain(int, char*[])
{
int i;
PArg* arg;
bcastc = chancreate(sizeof(char*), 0);
proccreate(consreadthread, nil, 16*1024);
for (i = 0; i < Npanels; i++){
panelc[i] = chancreate(sizeof(char*), 0);
arg = malloc(sizeof(*arg));
arg->c = panelc[i];
arg->fd = 1; /I to test the program.
proccreate(panelthread, arg, 8*1024);
}
/I The current thread used for bcast.
bcastthread(nil);
}

The process structure is shown in figure 11.4, which represents each separate process with a dashed box and eacl
thread with a circle. This time, we ended with a single thread within each process. But usually, a central process
has multiple threads to do the actual work, and there are some other processes created just for doing 1/O without
blocking all the threads.

There is another benefit that arises from using threads that communicate through channels. This time, we do
not need to optimize our program to maintain thiete for updating the panel outside of the critical region, to
permit all panels to be updated simultaneously. All panels are updated simultaneously in a natural way, because

- 250 -

panelc[0]

~—

panelc[n]

Figure 11.4:Process structure for the airport panels program, using threads.

each one uses its own process and does not lock any shared data structure. There are locks in this program, but
they are hidden deep under the implementatiosesfd andrecv .

11.5. Many to one communication

The program that we built is nice. But it would be nicer to display in the panels, along with each message,
the current time and the temperature outside of the airport building. For example, if the operator types the mes-
sage

AA flight 847 delayed

we would like panels to show the message
AA flight 847 delayed (17:45 32°C)

We could modify the code for theganel thread to do it. But it would not be very appropriate. A panel thread is
expected to write messages to a panel, and to write them verbatim. The same happens to other threads in this pro-
gram. They do a very precise job and are modular building blocks for building a program. Instead, it seems better
to put another thread betweeonsread andbcast , to decorate messages with the time and the temperature.

We call this new threadecorator

There is still the problem of updating the panels when either the time changes (the minute, indeed) or the
temperature changes. It would not be reasonable to display just the time and temperature for the moment when the
operator typed the message shown.

As a result, the newlecorator thread must have three different inputs. It receives messages, but it must
also receive time and temperature updates. That leaves us with the problem of how do we generate the two addi-
tional input streams. To follow our modular design, two new threads will be in charge of providing them. The
resulting process design is that shown in figure 11.5. And the code of the whole program may look like this.

- 251 -

Figure 11.5:Process structure for the enhanced airport application.

[etticker.c
#include <u.h>

#include <libc.h>
#include <bio.h>
#include <thread.h>

enum { Npanels =2 };

Channel*timerc; /I of char*
Channel*consc; /I of char*
Channel*tempc; /I of char*
Channel*bcastc; /I of char*
Channel*panelc[Npanels]; /I of char*

typedef struct PArg PArg;
struct PArg {

Channel* c; I/ to get new messages from
int fd; /I to the panel’s file.
h
void
consreadthread(void*)
{
Biobuf bin;
char* In;

threadsetname("consread");

Binit(&bin, 0, OREAD);

while (In = Brdstr(&bin, "\n’, 1))
sendp(consc, In);

sendp(consc, nil);

Bterm(&bin);

threadexits(nil);

void
bcastthread(void*)
{
char* msg;
int i;
threadsetname("bcast");
do {
msg = recvp(bcastc);
for (i = 0; i < Npanels; i++)
if (msg != nil)
sendp(panelc[i], strdup(msg));
else
sendp(panelcfi], nil);
free(msg);
} while(msg != nil);
threadexits(nil);
}
void
panelthread(void* a)
{
PArg* arg = a;
char* msg;
threadsetname("panel");
while(msg = recvp(arg->c)X{
write(arg->fd, msg, strlen(msg));
free(msg);
}
threadexits(nil);
}
void
timerthread(void* a)
{
Channel* ¢ = a;
ulong now;
Tm* tm;
char msg[10];

for(;;{
now = time(nil);
tm = localtime(now);

seprint(msg, msg+10, "%d:%d", tm->hour, tm->min);

sendp(c, strdup(msg));
sleep(60 * 1000);

- 252 -

- 253 -

void
tempthread(void* a)
{
Channel* ¢ = a;
char temp[10];
char last[10];
int fd, nr;
last[0] = 0;
fd = open("/dev/temp", OREAD);
if (fd < 0)
sysfatal("/dev/temp: %r");
for(;){
nr = read(fd, temp, sizeof(temp) - 1);
if (nr <=0)
sysfatal("can’t read temp");
temp[nr] = 0;
if (stremp(last, temp) != 0){
strcpy(last, temp);
sendp(c, strdup(temp));
}
sleep(60 * 1000);
}
}
void
decoratorthread(void*)
{
char* Icons, *ltimer, * ltemp;
char* consmsg, *timermsg, *tempmsg;
char* msg;
Alt alts[] = {

for(;;){

{ timerc,&timermsg, CHANRCYV },
{ consc, &consmsg, CHANRCYV },
{tempc, &empmsg, CHANRCV },
{ nil, nil, CHANEND } };

msg = nil;
switch(alt(alts)){
case 0: /I operation in alts[0] made
msg = smprint("%s (%s %s)\n",
Icons, timermsg, Iltemp);
free(Itimer);
Itimer = timermsg;
break;

case 1: /I operation in alts[1] made
msg = smprint("%s (%s %s)\n",
consmsg, Itimer, Itemp);
free(lcons);
Icons = consmsg;
break;

- 254 -

case 2: /I operation in alts[2] made
msg = smprint("%s (%s %s)\n",
Icons, Itimer, tempmsg);
free(ltemp);
Itemp = tempmsg;
break;

}

sendp(bcastc, msg);

void

threadmain(int, char*[])

{
int i;
PArg* arg;

timerc = chancreate(sizeof(char*), 0);
consc = chancreate(sizeof(char*), 0);
tempc = chancreate(sizeof(char*), 0);
proccreate(timerthread, timerc, 8*1024);
proccreate(consreadthread, consc, 16*1024);
proccreate(tempthread, tempc, 8*1024);
for (i = 0; i < Npanels; i++){
panelc[i] = chancreate(sizeof(char*), 0);
arg = malloc(sizeof(*arg));
arg->c = panelc[i];
arg->fd = 1; /I to test the program.
proccreate(panelthread, arg, 8*1024);
}
bcastc = chancreate(sizeof(char*), 0);
threadcreate(decoratorthread, nil, 8*1024);
bcastthread(nil);

}

Sending time updates is simple.téner thread can send a message each minute, with a string representing the
time to be shown in the panels. It receives as a parameter the channel where to send events to.

void
timerthread(void* a)
{
Channel* c = a;
ulong now;
Tm* tm;
char msg[10];
for(;;§
now = time(nil);
tm = localtime(now);
snprint(msg, 10, "%d:%d",tm->hour, tm->min);
sendp(c, strdup(msg));
sleep(60 * 1000);
}
}

The functionlocaltime was used to break down the clock obtained by the caihte into seconds, minutes,

hours, and so on. This thread does not generate a very precise clock. It sends the time once per minute, but it
could send it when there is only one second left for the next minute. In any case, this part of the program can be
refined and programmed independently of the rest of the application.

- 255 -

To read the temperature, we need a temperature metering device. We assume that/des/tdenp
gives the current temperature as a string each time when read. To implement theehpadve measure the
temperature once per minute. However, the thread only sends a temperature update when the temperature change
(and the first time it is measured). Once more, the channel where to send the updates is given as a parameter.

void

tempthread(void* a)

Channel* c = a;
char temp[10];
char last[10];

int fd, nr;
last[0] = O;
fd = open("/dev/temp", OREAD);
if (fd < 0)
sysfatal("/dev/temp: %r");
for(;;){
nr = read(fd, temp, sizeof(temp) - 1);
if (nr <=0)
sysfatal("can’t read temp");
temp[nr] = 0;
if (strcmp(last, temp) = 0}
strcpy(last, temp);
sendp(c, strdup(temp));
}
sleep(60 * 1000);
}

}

What remains to be done is to implement ttezorator thread. This thread must receive alternatively from one

of three channelgjmerc , tempc, or consc . When it receives a new message from either channel, it must
concoct a new message including up to date information from the three inputs, and deliver the new message
throughbcastc to update all the panels. Because we do not know in which order we are going to receive inputs,
we cannot useecvp . The functionalt implements many-to-one communication. It takes a set of channel
operations (sends or receives) and blocks until one of the operations may proceed. At that point, the operation is
executed an@lt returns informing of which one of the channel operations was done. Before discussing it, it is
easier to see the#ecorator thread as an example.

void
decoratorthread(void*)
{
char* Icons, *ltimer, * ltemp;
char* consmsg, *timermsg, *tempmsg;
char* msg;
Alt alts[] = {

{ timerc,&timermsg, CHANRCYV },
{ consc, &consmsg, CHANRCYV },
{tempc, &empmsg, CHANRCYV },
{ nil, nil, CHANEND } };

Icons = strdup(™);
Itimer = strdup(");
Itemp = strdup(");

- 256 -

for(;;)}{

msg = nil;

switch(alt(alts)){

case 0: // operation in alts[0] made
chanprint(bcastc, "%s (%s %s)\n",

Icons, timermsg, Itemp);

free(ltimer);
Itimer = timermsg;

break;
case 1. // operation in alts[1] made
if (msg == nil)

threadexitsall("terminated");
chanprint(bcastc, "%s (%s %s)\n",
consmsg, Itimer, ltemp);
free(lcons);
Icons = consmsg;
break;
case 2: // operation in alts[2] made
chanprint(bcastc, "%s (%s %s)\n",
Icons, ltimer, tempmsg);
free(ltemp);
ltemp = tempmsg;
break;

}

The call toalts receives an array of fouklt structures. The first three ones are the channel operations we are
interested in. The fourth entry terminates #ls array, so thaalt could know where the array ends. When the
thread callsalt , it blocks. And it remains blocked untény of the three channel operations representedlby
entries in the array may be performed.

For example, if right before callinglt the timer thread sent an updatdt will immediately return,
reporting that a receive frotimerc was made. In this casalt returns zero, which is the index in tladts
array for the operation performed. That is how we know which operation was made, its index in the array is the
return value fromalt

EachAlt entry in the array is initialized with the channel where the operation is to be performed, a constant
that can beCHANRCYWr CHANSENMD indicate that we want to receive or send in that channel, and a pointer to
the message for the operation. The cons@HANENDs used as the operation to mark the end of the array, as
seen above. To say it in another way, the caliito above is similar to doingny ofthe following

recv(timerc, &timermsg);
recv(consc, &consmsg);
recv(tempc, &tempmsg);

But alt works without requiring a precise order on those operations. That is a good thing, because we do not
know in which order we are going to receive updates. We do not know which particular channel operation is
going to be picked up bglt if more than one can be performed. But we know thiat is fair. Adding a loop
aroundalt guarantees that all the channel operations that may be performed will be performed without starvation
for any channel.

Now thatalt is not a mystery, we should mention some things done byd#worator thread. This
thread useshanprint to send messages to theast channel. A call tochanprint is similar to calling
smprint (to print the arguments in a string allocated in dynamic memory), and then sending the resulting string
through the channel. This function is very convenient in many cases.

At any time, the operator might send an end-of-file indication, typogtrol-d When thedecorator
thread receives a nil message (sentbygsthread upon EOF), it callghreadexitsall . This function ter-
minates all the processes and threads of the program, terminating it.

- 257 -
11.6. Other calls

In general, it is safe to use whatever functions from the C library (or from any other one) in a program using the
thread library. We have done so through this chapter. Function libraries try not to use global variables, and when
they do, they try to protect from races so that you could call them from a concurrent program. In other systems,
things are not so nice and you should look into the manual pages for warnings regarding multi-threaded programs.
For example, many UNIX manual pages have notes stating that functioTa8afe i.e., safe for use in multi-
threaded programs. That is, in programs with multiple threads.

Even in Plan 9, some other functions and system calls are not to be used when using the thread library. In
general, this happens whenever a function deals with the flow of control for the process. A threaded program has
multiple flows of control, and it would make no sense to operate on the underlying flow of control of the process
used to implement the various threads.

We have seen thahreadexits must be used instead ekits , because of the obvious reason. This
case was clear. A less clear one maypbeccreate , which we used instead of callinfprk or fork . The
thread library knows about the processes it creates. It tries hard to supply the same interface for both threads and
processes, so that all its operations work in the same way for both entities. Ipdeecteate creates a single
thread in a new process. Thus, you might say that all operations from the library work just on threads. In any case,
usingrfork to operate on the resources for your process is safe. For example, to make a copy of environment
variables, put the process in a new note group, etc.

In a similar way,procexec (or procexecl) should be used instead ekec (or execl). A call to
exec would replace the program for the process, making void all the threads that might be running on it. But a
call to procexec works nicely when using processes and threads. Of course, it only makes sense to call
procexec when there is a single thread in the process making the call. Otherwise, what would happen to the
other threads? Their code and data would be gone!

In most cases, there is no need to eadlit to wait for other processes. The processes you create can syn-
chronize with the rest of your program using channels, if you need to convey a completion status or something
else. That is not the case when usipmgcexec . The program executed lyrocexec knows nothing about
your program. Therefore, a substitute fwait is appropriate for this case. The functitdmeadwaitchan
returns a channel that can be used to recéiaitmsgs for processes what we used to execute other programs.

The following program is a complete example regarding how to execute an external program and wait for it.

#include <u.h>
#include <libc.h>
#include <thread.h>

Channel*waitc;
Channel*pidc;

void
cmdproc(void* arg)
{

char* cmd = arg;

procexecl(pidc, cmd, cmd, nil);
sysfatal("procexecl: %r");

- 258 -

void
threadmain(int, char*[])

{
char In[512];
int pid, nr;
Waitmsg *m;

write(1, "cmd? ", 5);
nr = read(0, In, sizeof(In)-1);
if (nr<=1)
threadexits(nil);
In[nr-1] = O; // drop \n
pidc = chancreate(sizeof(ulong), 1);
waitc= threadwaitchan();
proccreate(cmdproc, In, 8¥1024);
pid = recvul(pidc);
print("started new proc pid=%d\n", pid);
if (pid >= 0){
m = recvp(waitc);
print("terminated pid=%d sts=%s\n", m->pid, m->msg);
free(m);

}

threadexits(nil);

}

The initial thread reads a file name and executes it. The actual work is dop®bgreate , which creates the
process to execute the file, and jmocexecl , which executes the new program in the calling process.

The first parameter foprocexecl may be either nil or point to a channel of unsigned integers. In the later
case, the pid for the process used to execute the command is sent through the channel. This is useful for more
than to obtain the pid for the process running the external command. It is guaranteed that the arguments supplied
to procexec will not be used after sending the pid. In our calee,is in the stack of the initial thread. After
receiving the pid, we could terminatereadmain , which deallocatetnh . However, before receiving the pid,
the arguments fgprocexec must still exist, and cannot be deallocated yet.

The program callshreadwaitchan to obtain a channel for notifying the termination of the external pro-
gram. Receiving from this channel yields th&itmsg thatwait would return for a program not using threads.

This is an example run.

; 8.texec
cmd? /bin/date
started new proc pid=1436
Sat Aug 5 19:51:05 MDT 2006
terminated pid=1436 sts=
8.texec
cmd? date
procexecl: 'date’ file does not exist

’

To conclude, handling of notes is similar in threaded programs than in other ones. Only that
threadnotify must be used instead afnotify . But the interface is otherwise the same.

Problems

1 Implement a concurrent program simulating a printer spooler. It must have several processes. Some of them
generate jobs for printing (spool print jobs) and two other ones print jobs. Needless to say that the program
must not have race conditions. You must use threads and channels as the building blocks for the program.

2 One way to determine if a number is prime is to filter all natural numbers to remove numbers that are not
prime. Using different thread for filtering numbers that divide candidate numbers, write a program to write
prime numbers.

3 There are different cars trying to cross a bridge. There are cars on both sides of the bridge. Simulate this

- 259 -

scenario using threads and channels. Avoid accidents.

The dining philosophers problem is a very famous one in concurrent programming. There are philosophers
who loop forever trying to think, and then to eat. All of them are seated around a round table, with a single
chopstick between each two philosophers. To eat, a philosopher needs both the chopstick on the left and the
one on the right. Write a program to simulate this scenario using threads for the different philosophers.

Avoid starvation in the previous problem.

12 — User Input/Output

12.1. Console input

In chapter 7 we saw thafc is the root of the file tree exported by tkeng3) driver. It is conventionally bound at
/dev , and provides the familigidev/cons file. Reading#c/cons obtains input from the console keyboard.
Writing to #c/cons writes characters in the console screen.

Whenrio , the window system, is running, it reaéis/cons to obtain the characters you type. Writing
them in the screen is a different story that we will tell later. Reading and wrtaigons while running the
window system is not a good idea. If more than one program is reading this file, the characters typed will go to
either program. In the following experiment, we askt to read#c/cons , storing what it could read into
/tmp/out |, so you could see what happens.

cat ‘#c/cons’ >/tmp/out

}7/0 We typed "hello"

Delete To restore things to a normal behavior
;cat /tmp/out

el;

Despite typinghello , rio could only reachlo . The other characters were readday . rio expects to keep
the real#c/cons for itself, because it multiplexes this file nicely, providing a virtual version of it on each
window’s/dev/cons

A write to #c/cons is also processed by tlownsdevice, even wherio is running. As a result, it prints
in the screen behindio ’s back. This command

echo ‘where will this go?’ > #c/cons’

will produce an ugly message printed in the screen, which might look like the one shown in figure 12.1. In a very
few occasions, the kernel itself may write a message for you in the console. The same would happen. Programs
started prior to runningio , that might also issue some diagnostics, would produce the same effect. All of them
are writing to the console output device.

nautilus

11 .
owhere will f_c'his go?
Il Putall Dump Exit

l Mew Cut Paste Snarf Sort 7 New Cut Paste Sn|
Just/nemo/ Del]
bins
doc/
guide

lib#
mail/
offline/
ohist
privates
Sre/
tmp/

Figure 12.1: A write to the actual console may write to the screen even when rio is running.

- 262 -

Writing some more things in the real console may cause a scroll, and the images in the screen will scroll
along with the text. Poorio , it will never know that the screen is messed up. To prevent this from happening,
the file #c/kprint may be used. If a process haskprint open for reading, the kernel will not print in the
screen whatever is written #t/cons . Instead, all that text is used to satisfy readstffiolkprint . For exam-
ple, executingat on this file, prior to doing thecho above, produces this effect:

cat /dev/kprint
where will this go?

All text sent to the console will now go to that window. For the record, it might help to print/disgkmesg
which records all the messages printed in the console so far, before ré&adimg

; cat /dev/ikmesg /dev/kprint

Plan 9

E820: 00000000 0009f800 memory
E820: 0009f800 000a0000 reserved

where will this go?

When we implemented programs to read from the console, it gave us a line at a time. We couddietrenline
before hitting return. However, this time, usiegt to read#c/cons returned characters, as we typed them.
What is going on?

Usually, the console device driver reads characters from the keyboard’s hardwacep&ad/hat you type
a little bit, before supplying such characters to any process redddwigcons . This is the cooking recipe used
by the console:

e A backspacgremoves the previous character read from the keyboard.
¢ A control-uremoves all the characters read from the keyboard, thus it cancels the current input line.

¢ A newlineterminates the cooking from the current line, which is made available to the application reading
from the console.

¢ ThecomposdusuallyAlt) key, followed by a few other keys, produces a character that is a function of the
other keys. This is used to type characters not usually found in the keyboard, dikeX.

e Any other character stands for itself, and is queued to be cooked along with the rest of the line.

The virtual version fordev/icons provided by the window system gives also a special meaning to a few other
characters, most notably:

) Deleteposts arinterrupt note to the process group associated to the window.
e Arrow keyst and! scroll backward and forward.
¢ Arrow keys— and-— move the text insertion point to the right and to the left.

e TheEscapekey puts the window in a, so calledpld mode. All the text typed while in hold mode is not
supplied to any application reading frdialev/cons . Therefore, you can freely edit multiple lines of text.
WhenEscapeis preseed again, and the window leaves hold mode, the text is given to any process reading
from /dev/cons

This is called the consolemoked mode When it is enabled, lines can be edited as dictated by the rules stated
above. This is also called lane discipline But the console can be also put in a, so callagy mode. In raw

mode, the console does not cook the characters at all. It gives them to the process reading from the console, as
they arrive from the keyboard.

The file /dev/consctl can be used to activate and de-activate the raw mode. A write of the string
rawon into such file puts the console in raw mode, until the file is closed or the stawoff is written. The
next program echoes what it can read from the console. But it puts the console in raw mode when called with

- 263 -

#include <u.h>
#include <libc.h>

void
usage(void)
{
fprint(2, "usage: %s [-r]\n", argvO0);
exits("usage");
}
void
main(int argc, char*argv[])
{
char buf[512];
int raw = 0;
int cfd = -1;
int nr;
ARGBEGIN{
case 'r’
raw++;
break;
default:
usage();
JARGEND;
if (argc 1= 0)
usage();
if (raw){
cfd = open("/dev/consctl", OWRITE);
write(cfd, "rawon", 5);
}
for(;;) {
nr = read(0, buf, sizeof(buf)-1);
if (nr <=0)
break;
buf[nr] = 0;
print("[%s]\n", buf);
}
if (raw)
close(cfd);
exits(nil);
}
This is what happens when we run it using the console’s cooked mode and its raw mode.
, 8.raw
hi
[hi
]
Delete
, 8.raw -r
[h]
[i]
[the program reads "\n"
]
[the program reads "Del"
[.] If we type "Esc", the program reads "Esc"

There are some things to note. First, in cooked mode we can see the characters we type as we type them. We
could typehi , and its characters were echoed to the screen by the console. The pBogramdid not read any-
thing as we typed them. Not yet. However, in raw mode, the consolenlutescho back to the screen what we

- 264 -

type. It assumes that the program reading in raw mode does want to do it all by itself, and echo is suppressed.

Another effect of raw mode is that the program reads one character at a time, as we type them. In cooked
mode, only when we type a newline the program will get its input.

A final and interesting difference is that weannotinterrupt the program pressingelete In fact, if
/dev/icons was#c/cons , it would know nothing aboubelete This key is an invention of the cooked mode
in consoles provided for windows by the window system. In raw moide, decides not to do anything special
with this key, and the application can read it as any other key.

Using the hold mode (provided by rio’s consoles in cooked mode) this is what happens.

8.out
Escape
hi hold mode is active...
there we can edit this until...
Escape
[hi
]
[there

]

The behavior is like in cooked mode (one line at a time), but we could type and edit while in hold mode.

To answer our pending question. The progreah , that we used to experiment with readitig/cons , got
characters and not lines because rio keeps the system console in raw mode. #tledis returns characters
as we type them. These characters are processgd bywhich uses them to supply a virtual console for the win-
dow were you are typing. Again, the virtual console for this window has both cooked and raw modes. In shell
windows, that operate in cooked mode, the window cooks the characters before giving lines to programs reading
them. When acme is run in a window, it puts its (virtual) console device in raw mode, to do the editing by itself.

12.2. Characters and runes

But that was not all about the console. The console, like most other devices using text, and like all Plan 9 pro-
grams using text, doesot use characters. This may be a surprise, but think ataharacterslike ©, «, andX.

For languages like English or Spanish, all text is made up with characters, that might be letters, numbers, and
other symbols. Spanish has also accented letters like & and fi. And this is just the start of the problem. Other lan-
guages use symbols to represent concepts, or what would be words or lexemes, for a spanish person. When com-
puters were used for english text, the standard ASCII for codifying characters as bytes was enough. Today, it is
not. There are many symbols and one byte is not enough.

Plan 9 usedJnicode which is a standard for representing symbols used for text writing. Indeed, Plan 9 was
the first system to use Unicode. The symbols used to write text are not called charactaragbutEach rune is
represented in Plan 9 as a 16-bit (two bytes) number. Most programs processing text are expected to use runes to
do their job. The data typRune is defined inlibc.h , as a short integer.

However, using a stream of 16-bit numbers to exchange text between different programs would be a night-
mare because it would break all the programs written to use just ASCII, which uses a single byte for each charac-
ter. Furthermore, many C programs use strings codified as a sequence of bytes terminated by a final null byte.
Sending a stream of 16-bit runes to such programs will make them fail.

To maintain compatibility with the huge amount of software that existed when Unicode was invented, a
encoding was designed to transform an array of runes into a byte stream that could be backward compatible with
ASCII. This encoding is calletd TF-8, (Universal character set Transformation Format, 8 bits) or just UTF (for
short). UTF-8 was invented by Ken Thompson (apparently in a dinner’s table, shared with Rob Pike). Runes like
©, «, andX do not use a single byte when codified in UTF. A rune may use up to three bytes in Plan 9's UTF.

A program reading text, reads a UTF byte stream, that is exactly the same used by ASCII when the text con-
tains characters present in 7-bit ASCIl (most characters but for accentuated letters and other special symbols).
After having read some text, if it is to be processed as such, the program converts the UTF representation into
Unicode. Then it is processed. Afterwards, to output some text as a result, the program is expected to convert the
text from Unicode back into UTF, before sending it to the output stream. Files that keep text used as input (or
coming as output) for programs, are also maintained in UTF.

- 265 -

The file /dev/icons does not provide characters when read. It provides runes. In many cases, a rune may
fit in a single byte. In other cases, it will not. The console keyboard driver knows how to compose multiple keys
to type runes not in the keyboard. The whole set of rules is describegitvoard6). Many runes may be gener-
ated by using theomposekey, usuallyAlt, and a couple of keys that remind the rune generated. For example,
typing Alt - > will produce—. Alt <- will produce—. Alts o leads to®, andAlt s a leads to &. Greek letters
can be generated by typinglt * and their roman counterparts. ThusjJt * m leads toy. The file
/lib/keyboard lists many runes that can be composed using several other keys in this way.

In general, any Unicode rune may be also generated by typling nnnn wherennnnis the code in Uni-
code for the rune. SoAlt X 00fe leads to p. The filglib/unicode lists unicode runes along with their
codes.

Programs that read and write data without assuming that it is text, may still operate one byte at a time, if
they want. Or many at a time. However, programs reading text and looking into it, should use the functions in
rung(2), or they would misbehave for non-english text. The functions in the C library describedéef®) pro-
vide conversion from UTF to runes and vice-versa. Among others, we have these ones.

sig runetochar chartorune
int runetochar(char *s, Rune *r)
int chartorune(Rune *r, char *s)

Now we can readcharactersproperly from the console, for the first time. The next program converts what it
reads to uppercase.

#include <u.h>
#include <libc.h>
void

main(int, char*[])

{

char buf[512];
char out[lUTFmax];
Rune r;
int nr, irl, orl;
char* S;
for(;;) {
nr = read(0, buf, sizeof(buf));
if (nr <=0)
break;
s = buf;

while (nr > 0){
irl = chartorune(&r, s);
s +=irl;
nr-=irl;
r = toupperrune(r);
orl = runetochar(out, &r);
write(1, out, orl);

}

exits(nil);

}

It processes one rune at a time. The functibartorune extracts a rune from the byte string pointed todyy

and places it a&r. The number of bytes occupied by the rune in UTF (that is, in the strirgsg,ds the return
value from the function. The functiomnetochar does the opposite conversion, and returns also the number of
bytes used. It is guaranteed that a rune will not occupy morelfi@maxbytes (3 bytes in Plan 9). Other conve-
nience routines, likeoupperrune , replace the traditional ones for characters. Our program works perfectly
with runes that do not fit in ASCII.

- 266 -

; 8.out
Ifeel © today.
| FEEL © TODAY.

An equivalent program, but unaware of unicode, would fail. Using this loop to do the conversion instead of the
Rune routines

for (i=0;i<nr; i++)
buffi] = toupper(buf[i]);
produces this result for this input.
Espafia includes Espufia.
ESPARA INCLUDES ESPURA.

The letterfi was not properly capitalized intdl. It could have been worse. We could have processed part of a
rune, because runes may span several bytes. For example, translating to uppercase by

buf[i] = buf[i] + A’ - "a’

will lead to a surprise (besides being wrong anyway).

12.3. Mouse input

Another popular input device is the mouse. The mouse interface is provided by the mouse driver through a few
files in #m

.l #m’

cursor mouse mousectl

’

This name is usually bound along with other deviceddaty . The file mousectl is used to write strings to
configure and adjust mouse settings. For example,

echo accelerated >/dev/mousect!

turns on mouse acceleration (a quick move in one direction will move the mouse fast in that direction, many more
pixels than implied by the actual movement). On the other hand,

echo linear >/dev/mousect/

disables mouse acceleration. There are several other messages. Depending on the hardware for the mouse, som
control requests may be ignored (if they do not make sense for a particular mouse).

When the window system is runningo is the one that reads and writes these files. As wd#hv/cons
rio provides its own (multiplexed) version for these files, on each window. Reatmgiouse yields mouse
events. However, this file may not be opened more than once at the same time.

;. cat #m/mouse’
cat: can't open #m/mouse: '#m/mouse’
device or object already in use

Sincerio has operfm/mouse, to read mouse events, nobody else will be able to open it tiatil terminates

and the file is closed. This is a safety measure to synchronize multiple programs trying to use this device at the
same time. In any case, the multiplexed version of the mddse/mouse , provided byrio for each window

is for us to read.

cat /dev/mouse
m 670 66 0 2257710 m 676
68 0 2257730 m 677 74
0 2257750 m 680 77 0 2257770

This file will never seem to terminate. No end of file indication for it. Indedgy/mouse is a stream of mouse
events. Each read will block until the mouse produces an event (it is moved or a button is pressed or released). At

- 267 -

that point,/dev/imouse returns 49 bytes. There is an initial lettefollowed by four numbers: the x and y coor-
dinates for the mouse, a number stating which buttons are pressed, and a time stamp.

The time stamp is handy when a program wants to detect double and triple clicks. In Plan 9, the mouse
might even be attached to a different machine. The time for the clicks that matters is that of the machine with the
mouse, when the mouse events were received from the hardware by the mouse driver. The time as seen by the
program reading the mouse might differ a little bit (there may be delays between different mouse events intro-
duced because our program moved out of the processor, or because the system went busy, etc.).

Mouse coordinates correspond to the position of the pointer in the screen. The screen is a matrix of pixels. A
typica